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Abstract
The most important technique to visualize 3D scalar data, as they arise e.g. in medicine from tomographic mea-
surement, is direct volume rendering. A transfer function maps the scalar values to optical properties which are
used to solve the integral of light transport in participating media. Many medical data sets, especially MRI data,
however, are difficult to visualize due to different tissue types being represented by the same scalar value. The main
problem is that interesting structures will be occluded by less important structures because they share the same
range of data values. Occlusion, however, is a view-dependent problem and cannot be solved easily by transfer
function design. This paper proposes a new method to display different entities inside the volume data in a single
rendering pass. The proposed opacity peeling technique reveals structures in the data set that cannot be visual-
ized directly by one- or multi-dimensional transfer functions without explicit segmentation. We also demonstrate
real-time implementations using texture mapping and multiple render targets.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

The majority of direct volume rendering techniques interpret
the scalar field as a participating medium which emits and
absorbs radiative energy at the same time. The optical prop-
erties required to solve the equations of light transport are
obtained from the underlying scalar field by a user-specified
transfer function.

The variety of existing volume rendering techniques may
motivate the statement, that the volume rendering problem is
solved. Indeed, this is true if we restrict ourselves to comput-
ing a solution of the volume rendering integral in real-time.
The problem of deriving the optical properties required for
ray integration, however, is still difficult to solve in prac-
tice. The process of transfer function design is often called
classification because the assignment of optical properties to
scalar data in general is a complex pattern recognition prob-
lem.

For volume data obtained by magnetic resonance imag-
ing (MRI) the approach of extracting structures of interest
by assigning optical properties based on the scalar value is
often inadequate. One popular problem with volume render-
ing of MRI data is that different tissue types are represented
by similar or overlapping ranges of scalar values. In the MRI

data set shown in Figure 1 for example the brain cannot be
visualized by pure transfer function assignment, because it is
surrounded by skin and fat tissue whose intensities lie in the
same range of data values. If the scalar values for the brain
tissue are set to opaque, the surrounding soft tissue will be-
come opaque as well and the brain will be occluded by these
structures. Most approaches to solving this problem rely on
explicit segmentation of structures of interest.

Classification in general is a time-consuming and cum-
bersome process. If adequate results are obtained they often
cannot be shared between different data sets, not even be-
tween data sets of the same modality. However, as mentioned
above the origin of the problems is occlusion, which is a
view-dependent problem. In this paper we present an alter-
native way to resolve the above mentioned occlusion prob-
lems and circumvent the time-consuming process of classi-
fication. An example of the visualization results obtained by
our method in real-time is displayed in Figure 2.

The presented visualization approach tries to solve occlu-
sion problems without the use of segmentation techniques.
Our solution targets time-critical scenarios, where volume
rendering must be performed fast and almost autonomously,
i.e with a minimum of user interaction.
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Figure 1: Orthogonal slice images extracted from a typical
MRI data set. Although different tissue types seem to be well
separated in space, multiple different structures map to the
same range of data values.

The remainder of this paper is structured as follows. In
Section 2 we have put together related work, relevant for this
paper. In Secion 3, we briefly outline important theoretical
aspects of direct volume rendering. Section 4 describes our
new opacity peeling technique and Section 5 provides imple-
mentation details. The results of our technique are demon-
strated in Section 6. Section 7 concludes and comments on
future work.

2. Related Work

Many sophisticated techniques to solve the volume ren-
dering integral in real-time have been proposed in
the past, including the shear-warp algorithm [LL94],
3D texture slicing [CCF94, WGW94], 2D texture map-
ping [RSEB∗00], pre-integration [EKE01], GPU ray-
casting [KW03, RGWE03] or special purpose hard-
ware [PHK∗99]. Effective solutions have been introduced
for rendering time-varying volume data [LMC01] and large
data sets [Rod99, GWGS02] at interactive frame rates. A
detailed overview of GPU-based volume rendering can be
found in the SIGGRAPH course notes on Real-Time Vol-
ume Graphics [EHK∗05].

At the current state-of-the-art, multi-dimensional transfer
functions as proposed by Kniss et al. [KKH01] have proven
superior to traditional 1D transfer functions. The magnitude
of the first and second order derivatives of the scalar field are
frequently used to expand the transfer function domain. Vega

Figure 2: Example results of our opacity peeling technique
applied to the MRI data set shown in Figure 1. The images
show the first two layers obtained by our opacity peeling
technique, rendered in real-time with on-the-fly gradient es-
timation and Blinn/Phong shading added. The second layer
reveals internal structures, such as the brain, the eyes, mus-
cle tissue, that are difficult to extract using pure transfer
function design.

et al. show the benefit of 2D transfer functions for visualiz-
ing blood vessels in CT angiography data [VST∗04]. Kniss
et al. [KSW∗04] use multi-dimensional transfer functions
to classify coregistered multi-variate MRI data. Svakhine et
al. [SES05] use 2D transfer functions for illustrative render-
ing. With multi-dimensional transfer functions, however, the
assignment process becomes even more intricate.

Kniss et al. [KUS∗05] propose a framework for render-
ing statistically classified volume data. Hadwiger et al. pro-
vide techniques for rendering segmented data [HBH03].
The Volume Shop application provided by Bruckner et
al. [BG05] allows interactive segmentation of volumetric
data with direct visual feedback. Other authors propose
importance driven visualization [VKG04] and illustrative
techniques [BGKG05], which may distinguish different tis-
sue types by manual specification. In all cases high qual-
ity images are generated, but segmentation and classifica-
tion is still time-consuming. Mora and Ebert use order-
independent compositing to circumvent time-consuming
classification [ME04].

The opacity peeling technique proposed in this paper
is somehow related to depth peeling, a well-known tech-
nique in computer graphics for order-independent ren-
dering of polygonal surfaces with non-refractive trans-
parency [Eve01]. This technique has been adapted by Nagy
and Klein to non-polygonal isosurface rendering in vol-
ume data [NK03]. They use depth-peeling to visualize the
n closest isosurfaces with respect to the viewer in a sin-
gle pass algorithm. Unlike this method, our technique uses
the emission-absorption model for ray integration and is not
build upon the assumption that interesting structures in the
data can be adequately visualized by isosurface extraction.

c© The Eurographics Association and Blackwell Publishing 2006.
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Figure 3: Four simple opacity layers rendered for the MRI data set in Figure 1. The straight-forward idea of starting a new
image, whenever the accumulated opacity value Ai exceeds a specified threshold leads to inadequate results. An additional
threshold is required to obtain images such as the ones in Figure 2.

3. Direct Volume Rendering in a Nutshell

Most approaches to direct volume rendering for scientific vi-
sualization are based upon a simplified model of light prop-
agation in participating media. This model completely ne-
glects scattering and only accounts for active emission and
absorption. Light is assumed to travel along straight lines
and this assumption allows us to integrate radiative energy
along viewing rays.

The ray-casting algorithm calculates the radiance L that
reaches the eye for every point on the image plane (i.e. for
every pixel). In the following equations a ray of sight is pa-
rameterized by the scalar position s′ along the straight line
from the eye position through a point on the image plane.
The ray is assumed to start at position s0 sufficiently far away
and reaches the eye at position s. The radiance L(s) can then
be calculated, according to

L(s) = L0 e−τ(s0,s) +
Z s

s0

q(s′)e−τ(s′,s)ds′. (1)

The first term on the right hand side is the background ra-
diance L0 at position s0 which is absorbed along its way to
the eye. The second term integrates additional light energy
q(s′), which is emitted at a point s′ along the ray and ab-
sorbed along its way from s′ to the eye. The extinction τ
along a ray segment is obtained by integrating the absorp-
tion coefficients κ, according to

τ(s0,s1) =
Z s1

s0

κ(t)dt. (2)

In practice, there are two methods to calculate numeri-
cal solutions of this rendering equations by iteration along
the ray. Both approaches divide the viewing ray into small
segments of fixed length and assume that emission and ab-
sorption are constant within each ray segment. The integrals
in Equations 1 and 2 are substituted by Riemann sums and
calculated by an iterative compositing scheme.

Back-to-front compositing starts with the background ra-
diance L0 at position s0 and proceeds in direction to the eye,

Li = qi +(1−αi) Li−1. (3)

Here, qi and αi refer to the source term and the opacity of
the i-th ray segment.

The alternative compositing scheme is front-to-back com-
positing. It starts with zero radiance at the eye position and
proceeds in direction away from the eye,

Li−1 = Li +(1−Ai) qi, (4)

Ai−1 = Ai +(1−Ai) αi. (5)

The value Ai is the opacity gathered along the ray so far and
must be updated in lock-step with the radiance. The advan-
tage of back-to-front compositing is that it does not require
this additional value Ai. Front-to-back compositing, how-
ever, is advantageous for ray-casting because the calculation
of a viewing ray can be stopped if the opacity Ai approaches
one. The radiance value will not change any further if Ai is
close to one. The reason for this is that the contributions of
all further ray segments are actually occluded. Such a tech-
nique is known as early ray termination.

4. Opacity Peeling

As described in Section 1, a major problem with rendering
of MRI data is that interesting structures might be occluded
by surrounding structures of less importance. In the previ-
ous section we have already seen a measure, that allows us
to determine when occlusion occurs along a ray. If we use
front-to-back compositing and the accumulated opacity Ai
in Equation 5 approaches one, all further ray segments will
be occluded.

The initial idea behind our opacity peeling technique is
quite simple. We use a direct volume rendering approach

c© The Eurographics Association and Blackwell Publishing 2006.



C. Rezk-Salama & A. Kolb / Opacity Peeling for Direct Volume Rendering

with front-to-back compositing. Whenever the accumulated
opacity value Ai exceeds a specified threshold, say 0.99,
early ray termination would stop the calculation for the
viewing ray. Instead of terminating the ray, however, we re-
set the accumulated opacity to zero and start a new image
at this position. We illustrate this technique by the pseudo
code displayed in Listing 1. The values L[j] represent the
radiance contribution to the opacity layer j. We use a sin-
gle floating point value in this example for simplicity. For
color images L and q(s) should be a RGB triplets. A new
layer is started if the accumulated opacity A exceeds the user-
specified threshold T_high.

Such a simple technique generates layered images as dis-
played in Figure 3. Four opacity layers are shown which con-
tain the contribution of different ray segments. The second
image shows structures occluded by the first image, the third
image is occluded by the second one and so on.

If we look at the resulting images, we immediately notice
a problem with this initial approach. The original intension
was to peel off the skin and fat layer in order to visualize
the brain tissue behind it. In Figure 3 the skin and fat layer
is peeled off only partially. None of the layers shows a clear
image of the brain surface. In the second layer parts of the fat
tissue still occludes the brain, while in the third and fourth
layers portions of the brain have already been peeled off.
The reason for this is the varying thickness of the fat tissue.
Obviously the rays reach the opacity threshold at different
positions and this cannot be fixed by modifying the opacity
threshold.

There is another problem with this approach. We start a
new image when the accumulated opacity is high. If this oc-
curs in a region within the volume data where the opacity α
of the current ray segment itself is close to one, we will end

int j = 0; // layer index
float A = 0; // accumulated opacity

L[0] = 0; // radiance 1st layer

// for all ray segments
for(int s = 0; s < s_max; ++s) {

// front-to-back compositing
L[j] = L[j] + (1-A) * q(s);
A = A + (1-A) * alpha(s);

if (A > T_high) {
j++; // start a new layer;
A = 0; // reset opacity
L[j] = 0; // radiance new layer

} // if
} // for

Listing 1: Pseudo code for ray tracing with opacity layers.

up starting new layers with every integration step until the
ray exits the region of high opacity.

Fortunately, there is a simple solution to both problems.
We introduce another threshold T_low. The opacity value
α of the current ray segment must fall below this threshold,
otherwise we do not start a new layer. The code sample in
Listing 1 can easily be modified to account for this additional
threshold (Listing 2). In any case the additional threshold
solves the problem of continuous layer restarts in opaque
regions.

if ((A > T_high) && (alpha(s) < T_low))
{

// start a new layer;
}

Listing 2: Modification to Listing 1 introducing a second
threshold T_low.

If we can assume that different tissue types are separated
by a thin region of low opacity, the second threshold also
solves the problem of varying tissue thickness. For most
MRI sequences, which measure low signal for air and fluid,
this is true (assuming that opacity is assigned proportional
to the data value). However, if this is not the case, the gra-
dient vector of the scalar field may be estimated for each
voxel as will be outlined in Section 4.1. The gradient magni-
tude can be used instead of the opacity α. A new layer is then
started when the gradient magnitude is larger than a specified
threshold. To improve the robustness of the gradient magni-
tude for boundary detection, it can be divided by the mag-
nitude of the second order derivative (Marr-Hildreth edge
detection [MH80]) as proposed by Kindlmann et al [KD98].
This boundary detection technique should be used for MRI
sequences that represent fluid by high intensity, such as MR-
CISS or MR-FISP sequences.

The data set in Figure 1 is an example for an MRI se-
quence where a lower threshold on opacity α works well.
Figure 4 show image results for the second layer with differ-
ent thresholds T_low. In the leftmost image, the threshold
is too low, which results in holes caused by rays that never
reach the second layer. The rightmost image demonstrates
that the lower threshold is sensitive enough to even separate
the skin from the muscle tissue. All images were generated
with an upper threshold of T_high= 0.95.

4.1. Multisampling

One of the major requirements for our visualization tech-
nique was to perform well for MRI data obtained within the
restrictions of a real clinical workflow, not only for ideal data
measured on healthy volunteers. Unlike many ideal MRI
data sets found in the internet, real patient data obtained in
clinical environments often have strict limits with respect to

c© The Eurographics Association and Blackwell Publishing 2006.
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Figure 4: The second layer images for different lower thresholds applied to the MRI data from Figure 1. The lower threshold
increases from left to right. In the leftmost image the threshold is too low resulting in visible holes. The rightmost image shows
that the opacity peeling technique even allows removing the skin layer to reveal the muscle tissue behind it, which is extremely
hard to obtain by explicit segmentation.

the acquisition time and the period of time an elderly patient
can lie still during the measurement. Such data is often noisy
and may contain visual artifacts due to patient motion. Noise
is a problem especially for intraoperative data measured by
open MR devices during a surgical intervention.

The opacity peeling technique described above is quite
sensitive to noise, due to the sharp thresholds applied, which
often causes ray segments for adjacent pixels to terminate
at considerably different positions. To alleviate this problem
for noisy data, we use a multi-sampling technique to aver-
age the opacity values of adjacent rays. The alpha values for
each position along the ray are then determined by averaging
multiple samples slightly shifted around the ray position at
locations on the plane perpendicular to the viewing ray. The
sampling patterns for 5× and 9× multisampling are illus-
trated in Figure 5 and the results are shown in Figure 6. The
distance between the individual sampling points is equal to
the size of a voxel.

If one of the multi-sampling schemes is applied anyway,
we can take two additional samples along the ray direction
and use them to compute central differences for on-the-fly
gradient estimation. This allows us to integrate local illumi-

Figure 5: Multisampling schemes. Multiple samples of the
volume data are obtained at locations lying on a plane per-
pendicular to the ray. Left: 5× multisampling. Right: 8×
multisampling.

Figure 6: Rendering results for the second layer obtained
by multisampling. Left: no multisampling. Middle: 5× mul-
tisampling. Right: 9× multisampling. The multisampling
techniques significantly reduces noise in the data

nation techniques such as the Blinn/Phong model on a per-
fragment basis.

If multisampling the data on-the-fly is too slow, the data
set can alternatively be filtered with a tent filter or a gaussian
as a preprocessing step. The gradient vectors for local illu-
mination can as well be pre-computed. However, we prefer
on-the-fly multisampling for two reasons: The first reason
is that prefiltering is independent of the viewing direction,
while our multi-sampling scheme only smoothes the data
perpendicular to the viewing ray. Second, we can use the
original sample values for luminance and use the smoothed
value only for alpha and for thresholding. Figure 7 shows the
the first and second layer of an preoperative MRI data set
measured immediately before a surgical intervention, ren-
dered with 9×multisampling and Blinn/Phong illumination.

4.2. Transfer Function Design

Another requirement for our technique was to work almost
autonomously, i.e. without a high amount of user interaction
to specify optical properties. As a first simplification, we re-
strict the emission values q to a single luminance value in-

c© The Eurographics Association and Blackwell Publishing 2006.
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stead of RGB triplets. This simplification is not a limitation
imposed by our technique, but is motivated by the prefer-
ences of many radiologists. They prefer monochrome dis-
play of the data, because this is the way they are used to
when looking at slice images. The subtle shades of color
seen in some of the example images are caused by shading
with colored light sources and not by classification.

The luminance and alpha values required for ray-
integration are specified as a linear mapping of the scalar
value,

q(s) =
s− smin

smax− smin
; (6)

α(s) =
s− tmin

tmax− tmin
; (7)

Instead of a complex transfer function, we found that the
four thresholds smin, smax, tmin and tmax are sufficient to render
typical MRI data if occlusion problems are resolved using
opacity peeling. An important benefit of this simple trans-
fer function setup is that most clinicians are already used
to it, because it is very similar to the grayvalue windowing
for slice images. The graphical user interface designed for
generating all the example images in this paper consists of
nothing more than six sliders, two for luminance and alpha,
respectively, and two for the upper and the lower threshold
for opacity peeling.

5. GPU Implementation

The described opacity peeling technique can easily be imple-
mented in any existing framework for software ray-casting.
Only very few modifications to the code are necessary, such
as the ones outlined in Listing 1 and 2. For real-time ren-
dering the presented technique can be used to supplement

Figure 7: The proposed opacity peeling technique with mul-
tisampling, is capable of revealing important structures from
preoperative MRI data, such as the blood vessels and brain
tissue. Note that the first layer clearly shows the fiducial
markers used during the intervention which can be used for
co-registration with real video data. The second level reveals
veins and brain structures, which is important information
for the surgeon

existing GPU implementations using texture-slicing or GPU
raycasting.

5.1. Texture Slicing

The most popular texture-based volume rendering tech-
niques are 3D texture slicing (usually with viewport-aligned
slices, [WGW94]) or the 2D multi-texture based approach
(with object-aligned slices, [RSEB∗00]).

Opacity peeling can be used with both techniques. Our
GPU-based implementation requires hardware support for
multiple render targets (MRT), which allow a fragment pro-
gram to output multiple color values in one pass. The volume
is rendered slice by slice in front to back order. For com-
positing we use a double-buffered offscreen rendering tech-
nique known as ping-pong blending [KPHE02]. In one step
we read from the first buffer and write to the second one. In
the next step the buffers are swapped before the subsequent
slice is drawn. This allows the alpha blending step required
for compositing to be performed in the fragment shader at
floating point precision. It replaces standard alpha blending,
performed at 8bit fixed-point precision in the frame buffer
operations.

In order to compute four depth layers in one rendering
pass, we simultaneously bind four floating point rendering
targets using the frame buffer objects OpenGL extension.
On many graphics boards, it is also possible to use the same
buffer both for reading and writing, as mentioned by En-
gel [EHK∗05]. We must take care ourselves to avoid concur-
rent read-write access between different fragment processing
units. In our case this is no problem because we are reading
and writing to the same pixel location. We can simply re-
place the double MRT buffers by a single MRT buffer and
save a considerable amount of local video memory.

A Cg fragment program implementing opacity peeling
with four layers in one step is shown in 3. Multi-sampling
and shading was omitted in this example to keep the code
simple. The struct at the top of the listing defines the out-
put value of the fragment program, which consists of four
RGBA quadruplets, one for each of the render targets. The
same buffers are simultaneously bound as 2D texture images
Buffer0–Buffer3 for read access in the fragment program.

The four thresholds smin, smax, tmin and tmax are stored in
one RGBA quadruplet called TF. After sampling the volume
and the render targets, the luminance and opacity thresholds
are applied. The alpha values A0 – A3 are the alpha blending
weights for the four targets, which are initialized with zero.
The following if-clauses check to which buffer we are cur-
rently rendering and set the alpha values accordingly. At the
end of the code the compositing is actually performed. Note
that we are using associated colors, which means that RGB
components must be pre-multiplied with opacitiy A. The dis-
played code can be modified to account for multi-sampling,
on-the-fly gradient estimation and shading.

c© The Eurographics Association and Blackwell Publishing 2006.
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5.2. GPU Ray-Casting

A different strategy to perform volume rendering on the
GPU is to exploit the support for dynamic loops and
branches to implement ray-casting [RGWE03, KW03]. The

struct COLOROUT {

float4 dst0 : COLOR0;

float4 dst1 : COLOR1;

float4 dst2 : COLOR2;

float4 dst3 : COLOR3;

};

COLOROUT main(half3 uvw : TEXCOORD0,

half3 sceenpos: TEXCOORD1,

uniform sampler3D DataSet : TEXTURE0,

uniform sampler2D Buffer0 : TEXTURE1,

uniform sampler2D Buffer1 : TEXTURE2,

uniform sampler2D Buffer2 : TEXTURE3,

uniform sampler2D Buffer3 : TEXTURE4,

uniform float T_low,

uniform float T_High,

uniform float4 TF)

{

COLOROUT retval;

// sample 3D texture

float s = tex3D(DataSet,uvw);

// sample MRT targets

float4 dst0 = tex2D(Buffer0,screenpos.xy);

float4 dst1 = tex2D(Buffer1,screenpos.xy);

float4 dst2 = tex2D(Buffer2,screenpos.xy);

float4 dst3 = tex2D(Buffer3,screenpos.xy);

float4 src;

src.rgb = clamp((s-TF.g)/(TF.r-TF.g),0.0,1.0);

src.a = 1.0;

float A = clamp((s-TF.a)/(TF.b-TF.a),0.0,1.0);

float A0,A1,A2,A3;

A0 = A1 = A2 = A3 = 0.0;

if (dst1.a <= 0.0) { // blend to layer 0

A0 = A;

}

if (dst2.a <= 0.0) { // blend to layer 1

if (((dst0.a > T_high) && (A < T_low)) ||

(dst1.a > 0.0)) {

A1 = A;

}

}

if (dst3.a <= 0.0) { // blend to layer 2

if (((dst1.a > T_high) && (A < T_low)) ||

(dst2.a > 0.0)) {

A2 = A;

}

}

if (((dst2.a > T_high) && (A < T_low)) ||

(dst3.a > 0.0)) {

A3 = A; // blend to layer 3

}

retval.dst0 = dst0 + (1.0 - dst0.a) * src * A0;

retval.dst1 = dst1 + (1.0 - dst1.a) * src * A1;

retval.dst2 = dst2 + (1.0 - dst2.a) * src * A2;

retval.dst3 = dst3 + (1.0 - dst3.a) * src * A3;

return retval;

}

Listing 3: Cg fragment shader for texture slicing with opac-
ity layers using multiple render targets.

first step in such an implementation is to calculate the
starting points for the rays by rasterizing the front faces
of the bounding box or an octree hierarchy of bounding
boxes [HSS∗05]. Afterwards the z-buffer is used as a depth
texture to obtain the correct ray-starting points. In such
an implementation we can integrate opacity peeling with-
out multiple render targets. The idea is to perform GPU-
raycasting as described in the original implementations.
Whenever our restart condition decides to start a new layer,
we simply update the z-buffer and exit the fragment pro-
gram. The next layer is calculated by using the updated
depth-texture to start the new layer at exactly the position
where the previous layer has terminated. Note that although
the GPU ray-casting procedure must be restarted once for
each layer, the volume is only traversed once from front to
back.

6. Results

The described algorithms were implemented on an ATI
Radeon X850 graphics board with 256 MB memory. The
performance achieved lie between 5 and 20 frames per sec-
ond, depending on viewport size, sampling distance, and the
complexity of the fragment program (multi-sampling, shad-
ing).

We do not claim that opacity peeling is applicable to any
kind of volume rendering problem or data type. Neither do
we claim that this technique can replace segmentation or
classification techniques, if high accuracy is required. The
proposed approach has been developed with the time-critical
visualization scenarios in mind, where structures inherent in
the data must be visualized fast and effectively with only a
minimum of user interaction.

One of those scenarios is neurosurgery where intraopera-
tively acquired MRI data is valid only a very limited period
of time after acquisition and must thus be visualized immedi-
ately, without much time for preprocessing or segmentation.
We have tested our rendering technique with a considerable
number of pre- and intraoperative patient data sets from clin-
ical practice. We claim that the developed technique fulfills
the requirement of fast and almost autonomous visualiza-
tion. All the result images in this paper have been obtained
with only a few seconds spend for threshold adaptation. The
opacity peeling technique performs best if the structures in
the data are onion-like. Generated images are not free of vi-
sual artifacts, as can be seen at the ear in Figure 4.

Figure 9 shows four opacity layers rendered for a noisy
intraoperative data set. The first layer shows the skin of the
patient. Although this first layer does not reveal any rele-
vant anatomical information, it can be used to co-register the
fiducial markers attached to the skin to intraoperative video
recordings. The second layer clearly reveals the eyeballs, the
meninx, vessels and surrounding muscle tissue. The third
layer peels off the meninx and reveals the brain. The fourth
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Figure 8: Direct volume rendering of the Armadillo CT data
set from the UTCT data archive. First two opacity layers.
The second layer shows bone structures and muscle tendons
hidden behind the opaque shell. The original data set avail-
able at http://utct.tacc.utexas.edu/ was downsam-
pled to 5122×499, 12 bit

.

layer shows deeper structures of the brain. The high thresh-
old had to be decreased considerably to create these images.
In order to visualize the deeper structures the upper thresh-
old must be decreased. A similar data set is shown in Fig-
ure 10. This is an intraoperative data set from a tumor re-
section recorded immediately before opening the head. The
third and fourth layer clearly reveal the pathological struc-
tures and allow the evaluation of the extent of the tumor.

Additionally, the opacity peeling technique was applied
to CT data. Figure 8 shows the first two layers for the
Armadillo data set available at the UTCT data archive
(http://utct.tacc.utexas.edu/). In the second layer
the shell of the animal was peeled off revealing bones and
muscle tendons. The same data set with different thresholds
is displayed in Figure 11.

Throughout our experiments with different data sets, es-
pecially MRI data, we have found that the simple opacity
peeling technique allows us to reveal complex structures hid-
den in the data. We were often surprised when discovering

structures we did not see before inside data sets that we were
working with for quite some time.

7. Conclusion and Future Work

We have explained and demonstrated the novel technique of
opacity peeling, which can be applied to reveal interesting
structures hidden in volumetric data, that cannot be easily
visualized by transfer function assignment. We have shown
that the proposed technique fulfils the requirements of fast
and autonomous visualization.

The techniques introduced in this paper are meant as
building blocks for engineering customized rendering pro-
cedures for application-specific visualization tasks. We
strongly believe that this is the future direction in scientific
visualization. Effective techniques must be tailored to the
concrete visualization problem by merging the expertise of
the computer scientist with the data-specific knowledge of
the client to build solutions that are intuitive to use for both
of them.

The opacity peeling technique was designed in the first
place to provide a volume rendering technique that performs
fast and almost autonomously in clinical practice. Our strat-
egy for transfer function assignment was driven by this goal.
However, other strategies are thinkable. In some cases it
might be useful to apply more complex transfer functions,
and possibly change the transfer function for each layer. This
would result in applications where classification accounts for
ray history. After volume rendering different layers can be
composited in image spaces, probably with image-based en-
hancements known from non-photorealistic rendering.
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Figure 9: Image results obtained by rendering intraoperative MRI data (2562× 112, 12 bit). Four opacity layers created in
a single rendering pass. The second layer shows the eyes, the meninx and muscle tissue. The third layer peels off the meninx
and reveals the brain surface. The fourth layer shows deeper structures of the brain. The high threshold had to be decreased
considerably to create these images.

Figure 10: Image results obtained by rendering intraoperative MRI data (2562×112, 12 bit). Four opacity layers created in a
single rendering pass. The first layer displays the skin of the patient and does not show valuable anatomical information, but
can be used for coregistration based on the fiducial markers. The second layer shows the meninx and muscle tissue. The tumor
is clearly visible in the 3rd layer. The 4th layer displays the boundary of the tumor and deeper structures of the brain.

Figure 11: Opacity peeling applied to a CT data set.Direct volume rendering of the Armadillo data set from the UTCT data
archive (http://utct.tacc.utexas.edu/). Opacity peeling is used to remove the shell and different layers of bone struc-
tures. The original data set was downsampled to 512×512×499, 12 bit
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