

FACHHOCHSCHULE WEDEL

UNIVERSITY OF APPLIED SCIENCES

DIPLOMA THESIS

Submitted to the department of

Media Information Science

Integration of Multichannel Sound in

Virtual Environments

Submitted from : Severin Sönke Todt

 Alter Hof 2

 25451 Quickborn

Compiled : 9th semester

Turned in : 2002 – 02 – 12

Certified by : Prof. Dr. Ülzmann Prof. Dr. Kolb

 Fachhochschule Wedel Fachhochschule Wedel

 University of Applied Sciences University of Applied Sciences

 Feldstraße 143 Feldstraße 143

 22880 Wedel 22880 Wedel

 Germany Germany

II

In memory of my loved grandfather

Kurt W. Mewes

III

Integration of Multichannel Sound in

Virtual Environments

by

Severin S. Todt

Submitted to the Media Information Science Department,

Fachhochschule Wedel – University of Computer Sciences,

on February 12, 2002

Abstract

In this work, a real – time 3-D sound API is developed based on a standard hardware

platform using a loudspeaker array of eight loudspeakers and Ambisonics for audio

reproduction in the context of virtual reality.

The basic human sound perception is introduced to identify relevant factors on 3-D

sound perception. The natural sound system is further investigated within a system

analysis of human listening

The cognition flows into the compilation of minimum requirements on real – time 3-D

sound APIs which are in the following used to appraise related API implementations

and justify the development of a new API approach.

For implementation purposes and audio reproduction a hardware system is composed

that is integrated in the available infrastructure of the virtual reality laboratory at the

Fachhochschule Wedel serving as an integrated virtual reality system housing virtual

reality applications as well as real – time 3-D sound processing tasks.

The real – time 3-D sound API’s kernel functionality is implemented and tested based

on the system being set up proving the parallel processing ability of graphical and 3-D

sound tasks in real – time using one machine and the possibility of easy integration of

real – time 3-D sound functionality in virtual reality applications.

IV

Acknowledgements

I like to thank Julia J. Lambeck for her understanding and patience. Without her

motivation and support this work would not be finished yet.

Thanks to my colleagues, Andreas Kolb, Henry Kleta, Katrin Fitz, Christine Nickel and

Daniel Bekowies for their understanding that work has to stand back sometimes.

Concentrating on this work was only possible through the open minded attitude of

Prof. Dr. Harms and the confidence of Prof. Dr. Ülzmann.

Without the tolerance, the staying power and regard of my parents, especially around

Christmas time, the completion of this thesis would not have been possible.

Severin S. Todt

Wedel, February 2002

V

Table of Contents

Abstract...III

Acknowldegements .. IV

Table of Contents ...V

Table of Figures...VIII

1. Introduction ...1

1.1. Motivation ...1

1.2. Related Research ..3

1.2.1. University of Aizu, Japan ...3

1.2.2. GMD – National Research Centre for Information Technology,

 Germany...4

1.2.3. Georgia Institute of Technology, U.S.A..5

1.3. Scope of this Thesis ...5

1.4. Organisation of this Thesis...7

2. Background... 8

2.1. Sound Perception...8

2.1.1. Physical Acoustic Perspective ...8

2.1.2. Psychological Acoustic Perspective..12

2.2. Spatial Sound Reproduction ...14

2.2.1. Spatial Auditory Displays ...14

2.2.2. Software Techniques for 3-D sound generation ..17

2.2.3. Headphone Versus Loudspeaker Reproduction ..21

2.3. 3-D Sound Integration in Virtual Reality Set-ups ...23

3. Real-Time 3-D Sound API requirements and Related Approaches27

3.1. Real-Time 3-D Sound API Requirements..27

3.1.1. Hardware Dependencies ..27

3.1.2. Operating System Dependencies..27

3.1.3. Access Points, Services, Functions and Components28

VI

3.2. Related Approaches ...29

3.2.1. Java 3D API...30

3.2.2. DirectX Audio API...31

3.2.3. OpenAL..32

3.2.4. VRML...32

3.2.5. Conclusion ...33

4. 3-D Sound System Analysis ...35

4.1. Data Flow Analysis ..35

4.1.1. Data Flow Simplification ...39

4.2. Data Catalogue ...43

4.2.1. Data Catalogue Simplification...44

4.3. Process Specification ...46

5. Hardware Set-up and Integration..47

5.1. Available Virtual Reality Infrastructure...48

5.2. Hardware Requirements..50

5.3. Audio Reproduction Evaluation..49

5.4. System Configuration ..52

5.4.1. System Integration ..53

6. API Design...55

6.1. Layer model...56

6.2. 3-D sound requirement implementation approaches ...57

6.3. PortAudio API..58

6.3.1. PortAudio Analysis ...59

6.4. PortAudio 3-D Extension Data aspects ...60

6.4.1. Data structures...60

6.4.2. Data Access and Service Routines..61

6.4.3. Listener Object ..62

6.4.4. Source Object ..63

6.4.5. Buffer Object...63

6.5. PortAudio 3-D Extension Application...64

6.6. PortAudio 3-D Extension implementation in ‘C’ ...65

VII

6.7. 3-D Functionality Algorithms ..66

6.7.1. Initialisation..66

6.7.2. Sound Source Generation..67

6.7.3. Buffer Generation...67

6.7.4. Audio processing...68

6.8. Moving objects ...74

7. Application Test...75

7.1. Virtual Reality Application Implementation ..75

7.2. Evaluation of Integratability ...76

7.3. Evaluation of Application Execution..77

8. Conclusion and Future Work...78

8.1. Summary..78

8.2. Future Work..79

References..79

Appendix A – CD – ROM content ..83

Eidesstattliche Erklärung..85

VIII

Table of Figures

Figure 1 : Head related coordinate system…………………………………………… 11

Figure 2 : Location error at the median plane………………………………………… 12

Figure 3 : The Cone of Confusion……………………………………………………. 13

Figure 4: Stereo audio reproduction………………………………………………….. 15

Figure 5: Surround sound in the horizontal plane using four speakers………………...15

Figure 6: 6.1 channel reproduction set-up……………………………………………. 17

Figure 7 : Sound rendering pipeline……………………………………………………18

Figure 8 : Triangulation of loudspeakers and loudspeaker positioning…………………20

Figure 9 : Integrated System approach for 3-D sound system integration…………….. 24

Figure 10 : Distributed System approach for 3-D sound system integration……………. 25

Figure 11: Context model of the 3-D sound system……………………………………34

Figure 12: Refinement of the 3-D sound system………………………………………. 35

Figure 13: Refinement of “propagate sound”………………………………………….. 35

Figure 14: Refinement of “create sound wave”………………………………………... 36

Figure 15: Refinement of “influence sound propagation”……………………………... 37

Figure 16: Refinement of “calculate sound wave propagation”………………………... 38

Figure 17: Context model with simplifications………………………………………… 40

Figure 18: Refinement of the 3-D sound system with simplification…………………... 41

Figure 19: Refinement of “propagate sound”with simplification ……………………… 41

Figure 20: Refinement of “create sound wave” with simplification……………………. 41

Figure 21: Refinement of “calculate sound wave propagation” with simplification……..42

Figure 22: Immersive Display System (TAN Holoscreen) at the virtual reality

 laboratory, Fachhochschule Wedel…………………………………………. 47

Figure 23: Distributed Virtual Reality System at the Fachhochschule Wedel…………... 48

Figure 24: Integrated system set-up using an additional video projector for integrating

 the vertical screen and loudspeaker array of eight speakers forming a cube… 50

Figure 25: 3-D Sound System integration into a distributed virtual reality system………53

Figure 26: Layer Model 3-D sound integration…………………………………………54

Figure 27: Modular Layer Model………………………………………………………. 56

Figure 28: Modular 3-D sound layer using Portaudio………………………………….. 57

Figure 29: Conceptual OMT Diagram Pa3D System…………………………………... 60

IX

Figure 30: Portaudio 3-D Extension Modules…………………………………………. 63

Figure 31: Memory access synchronisation……………………………………………. 67

1

1. Introduction

Sounds are present in our everyday world. Sound as we hear it comes from all around us

delivering information about our environment and specific objects in it.

Sound positioned in space, often called spatialised sound, 3-D sound or 3-D-Audio,

utilises the human ability to distinguish sounds by their location in space, pitch and tone

to deliver the information hold by the sound emitting object.

3-D sounds broaden the pure information about the object’s nature by adding positional

information to the sound.

This aspect can help to increase the sense of presence of virtual reality applications and

to improve their immersiveness.

For a long time the capabilities of sound, especially 3-D sound have been ignored.

Considering the proven fact that adding sound to an interactive application is able to

improve the overall interactivity and even the perceived image quality1, it is highly

desirable to include 3-D sound in virtual reality applications.

1.1. Motivation

The motivation for this thesis originates from the great benefits of 3-D sound

integration in graphic based applications.

In western cultures the visual perception is more distinct than all of the other senses –

in other cultures like in the African culture the auditory sense play a bigger role. 1

The cultural differences give reason for the fact that the emphasis of most applications

in the field of virtual reality is about the integration and presentation of visual aspects to

gain the impression of realism.

An application can only appear as realistic as the amount and type of senses integrated

in the application allow it to be. The more senses included in a virtual reality application

the higher the immersiveness will be. The greater the diversity of senses accosted by the

application the more realistic the generated impression will appear.

1 cp.: Hennig, Alexander, Die andere Wirklichkeit, München, Addison Wesley, 1996

2

As a matter of course the sense of hearing should be part of any virtual reality

application in order to obtain the highest immersiveness possible.

3-D sound can contribute to the sense of immersivity in a 3-D environment through the

enrichment of feedback channels which can be helpful redundant to a visual cue or can

provide feedback for actions and situations that are out of the listener’s field of view.2

Several studies have proven that the integration of high quality sound in graphic based

application has the capability to improve the subjective perception of the image quality.

Sound can complete the felt visual impression by giving additional feedback and

information regarding the pictured scene. It can be emitted when two objects of the

actual scene collide, making information about the object’s material and the

vigorousness of the collision available. Invisible objects can easily be pursued or audibly

observed through the use of spatialised sound. With sound integration the recognition

of objects in a scene can be improved3 and the time delay between object appearance

and object perception can be shortened.4

With the benefits of sound integration, sound can be used to improve the quality and

ease of interaction within applications.

Although sound is used a lot in the entertainment industry like in film business and

computer game programming there is a dearth of applications using sound effects

computed in real time. Most of the available programs use sound only as environmental

coloration, playing sounds of the scratch without computing any effects concerning the

user input in real time. Mostly the reproduction is limited to playing pre-spatialised

sounds or ambient sounds, sometimes optimised for multichannel reproduction but not

for real-time 3-D sound reproduction.

2 cp. :Begault, Durand R. : 3-D sound For Virtual Reality And Multimedia, Moffet Field, NASA Ames

 Research Center, Academics Press Professional, 1994, Reprint 2000, p.14

3 cp.: Davis, Elisabeth T. a.o. : Can Audio Enhance Visual Perception and Performance in a Virtual

 Environment, Atlanta, Georgia Institute of Technology, 1999, p. 4

4 cp.: Begault, Durand R. : Head-Up Auditory Displays for Traffic Collision Avoidance System

Advisories, Moffet Field, NASA Ames Research Center, The Human Factors and Ergonomics Society

Inc., 1993, p. 707

3

To ensure easy access to sound features, to simplify the integration of sound and to

consider user input in any context for computation of corresponding sound effects in

real - time, an application programming interface is desirable.

Through the use of an API more applications will originate, expediting the development

of more sound related technologies. Programmers will be shielded from the operating

system subroutines and sound device access processes, giving more developers

approach to the wide field of sound, resulting in further research in the field of sound.

1.2. Related Research

By the time this thesis is written a number of research projects concerning the

implementation of sound in applications have been implemented.

In the following three representative sample research projects regarding the integration

of 3-D sound in virtual reality applications will be resumed before the scope of this

thesis is presented.

All of these projects resulted in a working hard- and software system offering the

capacity of delivering 3-D sound effects computed in real time. They all offer an API,

making it possible to create situation fitted audio applications.

But all of the approaches differ in the capacity of operating resources needed for

computation, the extendibility, the ease, the financial aids needed and the

transportability to other platforms.

1.2.1. University of Aizu, Japan

At the University of Aizu research is concentrated on representing multimedia

technologies in 3-D space. Out of this focus the project “Virtual Reality Sound” was

raised in 1999.

The project resulted in a hardware audio set-up making 3-D sound reproduction over

headphones or a loudspeaker array consisting of 14 loudspeakers available.

The headphone reproduction is driven by the “Acoustetron II” audio card – a high cost

audio card former manufactured by Crystal River Engineering, proposed for the

computation of spatialised sound in real - time.

4

A special control system, manufactured by Pioneer Corporation, the “Pioneer Sound

Field Control System”5 makes the 14 loudspeakers accessible. For other reproduction

systems the interface is designed to be open for extensions.

On the software side a toolkit called “Sound Spatialisation Resource Management

Framework” written in C++ is used to compose multimedia applications.

In addition to simple being an application composer it offers support for efficient

resource management.

The sound spatialisation is performed in conformity with the VRML 97 standard. 6

1.2.2. GMD – National Research Centre for Information Technology, Germany

Research projects aiming at the introduction of virtual reality technologies for

applications concerning visualisation and mediation of digital content are housed in the

Competence Centre Virtual Reality at the GMD7.

Two main audio related projects have been progressed in the past.

Within the “CyberStage” project an eight channel 3-D sound reproduction system was

established using an additional vibrating floor to provide haptic audio feedback.

Secondly a 3-D sound reproduction system was developed being able to serve 3-D

sound for a great amount of listeners. Using loudspeakers this system is interlinked with

a 140 meter wide projection wall for visual feedback.

Both systems run on a SGI Octane hardware platform and are controlled over a

“Sound Server” software API, designed for operation on SGI hardware platforms.

The “Sound Server” is used to perform the syntheses, processing and spatialisation of

sound signals. To enable great amount of educible virtual sound sources and adjust it to

the actual situation, the type and amount of rendered audio effects is adjustable.

For high level programming an additional simplified API is provided which offers easy

access to the sound features as well as to the graphic processing pipeline.

5 cp.: http://wwwsv1.u-aizu.ac.jp/~mcohen/spatial-media/PSFC/welcome.html, 11.02.2002

6 cp.: Herder, Jens : A Sound Spatialisation Resource Management Framework, Aizu, The University of

 Aizu - Spatial Media Group, 1999

7 cp. http://www.gmd.de/, 11.02.2002

5

1.2.3. Georgia Institute of Technology, U.S.A.

Research projects concentrating on finding better ways to communicate information

between people and between computers and people are dealt with at the Georgia Tech

Computer Interest Group8.

The major project NAVE – Non expensive Automatic Virtual Environment aims at a

high performance low cost virtual reality hard- and software set-up.

Within this project an environment including three projection walls and a dedicated

audio workstation, totally based on of the shelf PC based systems was implemented.

Only operating three standard PC based systems for graphical issues and an extra PC

system for audio processing the system it is able to run the projection walls and

implement 3-D sound applications.

With the audio workstation four loudspeakers for surround sound and a “Thunder

Seat” – a low frequency vibrating seat - are driven.

Over an API, connecting sound properties to objects positioned in 3-D space is

possible.

Taken into account the listener and object position as well as the speed, the Doppler

shift and environmental sound effects are computed in real - time.

1.3. Scope of this Thesis

As seen in world-wide projects, like the ones introduced, there is great interest in

designing an API, offering easy access to sound integration for real time 3-D sound

applications.

A great number of projects have examined this problem creating variations of operative

soft- and hardware implementations.

Nearly all of the approaches come with the same major shortcomings. The projects and

shortcomings can be distinguished in three categories.

One category of projects like the “Virtual Reality Sound” project at the University of

Aizu depend on special and high cost hardware. Other hardware set-ups are conceivable

in principle but would reach in a reimplementation of the software toolkit.

8 cp.: http://www.gvu.gatech.edu/gvu/, 11.02.2002

6

Secondly approaches like the GMD’s “Cyber Stage” and “Sound Server” seem to be

expandable but are inflexible and hard to match to other hardware set-ups.

To base the 3-D sound system on hardware with a high level of divulgation is a step in

the right direction, although the hardware that is relied on, often is too expansive to be

really wide spread as shown in the “Cyber Stage” project which relies on SGI

hardware capacities. Choosing to use hardware with greater prevalence makes 3-D

sound applications available for more consumers and developers.

To overcome the last burden less expensive hardware systems are taken into account for

an even vaster propagation of 3-D sound systems and applications as seen in a basic

approach at the “NAVE” project at Georgia Tech representative for a third category of

projects.

For a breakthrough of real time 3-D sound systems and applications it is necessary to

follow the path paved within the “NAVE” and “Cyber Stage” projects and to go further

beyond the projects’ idea.

To rely on affordable and wide spread hardware is a decision benefiting the propagation

of real-time 3-D sound systems. There has to be support for the greatest variation of

available hardware. An 3-D sound API must be free of any hardware specifications . It

must be easy adjustable for consumers to fetch their used hardware configuration. It

should be affordable and useable.

This thesis investigates the possibilities of 3-D sound integration in virtual reality

applications. The investigation includes the set-up of a base audio workstation,

composed of off the shelf hardware components.

Pursuing the designation of an hardware and operating system independent 3-D sound

API for real-time audio processing, available APIs are examined. Based on the results of

the examination a new API will be developed to suffice the demands of real-time 3-D

sound.

Keeping in mind the primary goal of an independent API, the API will matched to the

installed audio hardware and the operating system running on the audio workstation set

up in a first step to proof the rightness of the API’s rudiment.

7

1.4. Organisation of this Thesis

Having introduced the scope of this thesis, the physics of sound perception and sound

reproduction will be introduced in the “Background” chapter.

The “Background” chapter first explains the human abilities as well as the human

weaknesses in sound perception to understand the assumptions made through the

implementation of the API and the underlying algorithms.

The different methods for sound reproduction are also shown and discussed in the

second chapter.

With the background it is then possible to expose the requirements necessary for a 3-D

sound API. The goals and minimum requirements of an software approach are retained

in the third chapter. Related software approaches are examined and their usability as

well as their mightiness are discussed. Properties of the related APIs making a new

software approach desirable are argued.

For extensive understanding of the 3-D sound mechanisms the natural 3-D sound

system is analysed within the fourth chapter.

To implement and operate a 3-D sound API a hardware set-up is needed which is

composed and evaluated in chapter five making the 3-D sound engineering process

described in chapter six possible.

A test application using the 3-D sound API is used to proof the workability of the

developed API. The test results are discussed and the API’s usability is rated in chapter

seven.

This thesis closes with the “Conclusion and Future Work” chapter, summarising the

work and giving an insight in future research projects.

8

2. Background

This chapter gives a short introduction to the main aspects of human sound perception.

An insight in software and hardware methods for audio reproduction is given showing

their advantages and disadvantages as well as approaches on how to integrate a audio

system in a virtual reality system are evaluated.

2.1. Sound Perception

The field of human sound perception has three scientific bases, the physical,

psychological and neurophysiological aspects of sound perception.9

Since auditory neurophysiology examines the neurological structures resulting in the

experienced sound, which is beyond the scope of this thesis, only the psychological and

physical aspects are considered here.

2.1.1. Physical Acoustic Perspective

Physical acoustics focuses on the accruement, and the propagation up to the perception

at the listener’s ear drums of sound.

Sound waves created by a vibrating object are emitted in all direction by omni-

directional sound objects and in a particular direction by directional sound objects.

During propagation the sound waves interact with objects positioned within the

direction of propagation. Throughout all the environment that the listener and the

sound emitting object are in, the sound wave is manipulated many times offering the

listener information about the sound object itself and the environment.

Using two ears the listener is capable of retrieving more information through intensity-

and time differences of sound arrival at the ears while receiving the sound wave.

A sound wave emitted by an object carries information by nature. Familiar sounds can

help the listener to classify or identify an object.

9 cp.: Kendall, Gary : A 3-D sound Primer,

 http://www.northwestern.edu/musicschool/classes/3D/pages/3DsoundPrimer.html, 11.02.2002

9

Even sounds that the listener is not familiar with, carry information about the

voluminous or size of the emitting object for example. Thus even unknown objects can

be classified through the sounds they are emitting (e.g. did you ever know a siren to be

good?10)

Furhter information is added to the sound while propagating through the environment

and during perception at the listeners ear drums.

On the way through the environment the sound wave is effected by the environment

itself, decreasing the intensity of the sound with covered distance, as well as through

interfering objects.

The intensity decrease of the sound with distance can be approximated for sound

propagation in air at average humidity with the inverse square law.11 Given a reference

intensity and distance an omnidirectional sound source’s intensity will fall almost exactly

6 dB for each subsequent doubling of distance from a source.12 More specific analysis

have shown, that the inverse square law is not the best method to simulate intensity

decrease over distance but still is accurate enough. Not only the intensity itself, the

overall impression of the arriving sound waves emitted by one source is more important

for distance perception then just the intensity itself.13 The distance of an object can be

specified by a listener for a specific moment. For moving objects the distance can be

determined several times at constant time intervals to gain information about it’s speed.

There is a more accurate effect serving information about an object’s speed relative to

the listener. The Doppler shift causes a change in frequency of the perceived sound

wave. Through movement in direction of sound propagation the wave length is

shortened or lengthened otherwise.1

Emitting into space, sound waves encounter objects by which they are reflected,

diffracted or absorbed.

10 cp.: Groening, Matt : The Call of the Simpsons, Twentieth Century Fox, 1990

11 cp.: Hennig, Alexander, Die andere Wirklichkeit, München, Addison Wesley, 1996

12 cp.: Begault, Durand R. : 3-D sound For Virtual Reality And Multimedia, Moffet Field, NASA Ames

 Research Center, Academics Press Professional, 1994, Reprint 2000, p.71

13 cp.: Begault, Durand R. : Preferred Sound Intensity Increase For Sensation Of Half Distance, Moffet

 Field, AES 93rd Convention San Francisco, 1992

10

Reflecting a sound decreases a sound’s intensity and changes it’s direction. If a

soundwave bends around an objects an acoustical shadow at the backside of the object

appears.

The acoustical shadow spreads out over an area depending on the wavelength and the

object’s size. Within the shadow area the sound is not perceivable.

A sound being absorbed by an object looses all of it’s intensity when encountering the

object.

Throughout sound propagation the sound is varied several times, causing all of a

sound’s soundwaves perceived by the listener to create a rich acoustic mixture. The

waves are arriving at the listener at different times from different directions.

Typically there is one straight-line path along which the initial waves of each event first

reach the listener. This initial direct sound provides the latest compromised information

about the direction of the sound event. The bigger part of soundwaves, called early

reflections, reaches the listener after several reflections at the surfaces or objects in the

room serving information about the room’s characteristics and additional information

about the location of objects. The part reaching the listener’s ears last, called

reverberations, gives the listener information about the size and structure of the room

he is in.

Every listener perceives the arriving sounds in a different way since they are filtered

directly by a listener’s body specific acoustical filter before reaching the ear drum. The

sounds are at last affected by the listeners torso, head, pinnae (outer ear) and ear canals.

Manipulation caused by the listener’s body can be described as a filtering function,

called “Head related transfer function” (HRTF). The HRTF varies between users and

has to be taken into account when reproducing 3-D sounds using two channels. A

further explanation of the HRTF is beyond the thesis but will be taken into account in

future researches.

With the help of the HRTF the listener is able to appoint the position of the sound’s

corresponding object.

11

For describing sound events, a coordinate system is used with the listener’s head being

centre of it. (Fig. 1)

Figure 1 : Head related coordinate system

The coordinate system is described using three planes. The horizontal plane which is

level with the listener’s ears, the frontal or lateral plane which devides the listener’s head

vertically between the front and the back and the median plane which devides the

listener’s head vertically between the left and the right.

The position is then described as a vector expressed in terms of two angels. Azimuth, as

orientation on the horizontal plane and elevation as orientation on the vertical plane

with one scalar, the distance.14

An object’s position is mainly derived from the time difference (internal time difference

- ITD) and intensity difference (internal intensity difference – IID) between sound

waves reaching the left and the right ear. The ear being closer to the sound source

receives the sound waves earlier and with higher intensity then the other ear.

14 cp.: Kendall, Gary : A 3-D sound Primer,

 http://www.northwestern.edu/musicschool/classes/3D/pages/3DsoundPrimer.html, 11.02.2002

12

2.1.2. Psychological Acoustic Perspective

Psychological acoustics focuses on the relationship between the acoustic waves at the

eardrums and the perception of spatial imagery of the listener.

In several researches it has been shown that only the part arriving at the ears first is

determining for the listener interpreted position of the object

This effect is called the “Precedence Effect” 15, since following sound information is

ignored.

For Objects positioned at the median plane the emitted soundwaves reach both of the

listeners ears at the same time, making determination whether the sound is coming form

above, below form the front or from the back possible. (Fig. 2)

Figure 2 : Location error at the median plane

Additionally, sounds positioned on a circle around the axis pointing through the ears of

the listener cause identical IIDs and ITDs making only imprecise positioning to the left

or the right possible, forming the “Cone of confusion”.16 (Fig. 3)

15 cp.: Pulkki, Ville, Spatial Sound Generation and Perception by Amplitude Panning Techniques,

 Helsinki, Laboratory of Acoustics an Audio Signal Processing - Helsinki University of Technology,

 Espoo 2001, Report 62, 2001, p.8

16 cp.: Begault, Durand R. : 3-D sound For Virtual Reality And Multimedia, Moffet Field, NASA Ames

 Research Center, Academics Press Professional, 1994, Reprint 2000, p.41

13

Figure 3 : The Cone of Confusion

Naturally the listener overcomes the positioning weaknesses through turning the head.

With changing the heads position the ITD and IID change and make an accurate

positioning possible.17

The resolution with which a sound object can be positioned in space is pretty low,

concerning the human abilities. The highest resolution is evident in the horizontal

dimension, especially in front of the listener where the minimum audible angle is about

two degrees. That angle increases to near ten degrees at the sides and narrows to near

six degrees in the rear. By comparison, the resolution in the vertical dimension is even

lower. The vertical minimum audible angle in front is near nine degrees and steadily

increases until overhead when it reaches 22 degrees.18

Having a visual counterpart of the acoustic impression the localisation improves in that

way as front back reversals are eliminated.

Reproducing an artificial sound, the position the sound is being played back from can

deviate from the corresponding object. Studies have shown that even a tolerance of

eleven degrees between the visual and acoustical position is only noticeable by experts.19

17 cp.: Tonnesen, Cindy; Steinmetz, Joe : 3-D sound Synthesis, Washington, The Encyclopedia of Virtual

 Environments, http://www.hitl.washington.edu/scivw/EVE/I.B.1.3DSoundSynthesis.html, 1993

18 cp.: Kendall, Gary : A 3-D sound Primer,

 http://www.northwestern.edu/musicschool/classes/3D/pages/3DsoundPrimer.html, 11.02.2002

19 cp.: Begault, Durand R. : Auditory And Non-Auditory Factors That Potentially Influence Virtual

 Acoustic Imagery, Moffet Field, Human Factors and Technology Devision - NASA Amees

 Research Center, 1999, p.8

14

The human ability to determine the distance of a sound object is even less precise and

varies between individuals. For distance perception it is proven that the listener has to

be familiar with the sound to determine the object’s distance, otherwise the listener

would not have any reference sound to compare the perceived sound’s intensity and

coloration with.

For this reason the sound object’s visual counterpart is taken for distance determination

if possible.

2.2. Spatial Sound Reproduction

Investigating different sound reproduction possibilities it is necessary to discern the

available algorithms as well as the available hardware set-ups and their implementation.

To fully understand audio reproduction concerns the main audio reproduction

techniques are introduced assigning the abilities of every possibility regarding the

reproduction of 3-D sound.

Audio reproduction is possible using loudspeakers or headphones. These two

approaches are compared, showing possible operational areas, the advantages and

disadvantages of each, leading to adaptable software algorithms for 3-D sound

reproduction for both of them.

2.2.1. Spatial Auditory Displays

Monophonic sound reproduction describes the audio presentation using one channel. A

monophonic sound system is incapable of reproducing the spatial characteristics of a

sound. Since all colorations of sounds, including reverberation are reproduced from the

location of the one channel only unnatural impressions can be generated.20

Two-channel stereo sound systems are far superior, enabling the reproduction of sound

images that are spatially distributed between two channels - implemented using

headphones or loudspeakers. When using loudspeakers they are normally set-up in a

way that listener and the two speakers are forming a equilateral triangle.

20 cp.: Gardner, William G.: 3-D Audio Using Loudspeakers, Boston, Massachusetts Institute of

 Technology, Kluwer Academic Publishers, Norwell, Massachusetts, 1998, pp.1-6

15

Playing the same sound over the two channels, it is then possible to generate a virtual

source between these two channels. Through adjusting the amplitude the virtual source

will be positioned further to the speaker with the higher intensity until it reaches the

channel’s location.

The loudspeaker reproduction supposes the listener staying in a small area between the

speakers, called the stereophonic area, to guaranty the full effect.21 (Fig.4)

With headphone reproduction the listener is freed of this restriction.

Figure 4: Stereo audio reproduction

The capabilities of stereo systems can be augmented by adding additional speakers to

the sides or rear of the listener. (Fig.5)

Figure 5: Surround sound in the horizontal plane
using four speakers

21 cp.: Dickreiter, Michael: Handbuch der Tonstudiotechnik, München, Saur, K.G, 1997, p.126

16

In these set-ups each channel receives a monophonic mixed and amplitude adjusted

signal of the same sound source from the mixing console that all of the channels are

connected to.22

The resulting surround systems are generally capable to reproduce sound images

anywhere in the horizontal plane surrounding the listener. Actual surround sound

systems are wide spread in the area of home cinema applications and in movie theatres.

These surround sound system like implemented by Dolby Laboratories (Early 70s

Dolby Stereo, 1982 Dolby Surround, 1987 Dolby ProLogic, 1992 Dolby

Surround Digital, 1998 Dolby Digital Surround EX) or Sony (1993 SDDS) are all

recommendations for speaker positioning and describing coding conventions for audio

data transmission. They are based on a “N.1” channel layout working with N full

bandwith channels used for sound localisation and one limited bandwith channel for

low frequency. The latest implementation from Dolby Laboratories, Dolby Digital

Surround EX rests upon a 6.1 layout. There three channels in the front (left, center,

right) and three in the back, the so called surround channels (surround left, surround

center, surround right). These are used to position sounds being played back23. A

loudspeaker playing back not locatable low-frequency sounds can be positioned

anywhere. Although the 6.1 layout offers good possibilities to position a sound being

played back, the sound can still be only positioned somewhere in the horizontal plane

not being able to produce a feeling of elevation. (Fig.6)

22 cp.: Jot, Jean-Marc, Synthesising Three-Dimensional Sound Scenes in Audio or Multimedia Production

 and Interactive Human – Computer Interfaces, Ircam - Centre Georges-Pompidou, 5th

 International Conference, Interface to Real & Virtual Worlds, Montpellier, 1996

23 cp.: Faust, Simon: 3-D Akustik mit Lautsprechern, Aachen, RWTH Aachen Virtual Reality and 3D

 Visualization, 2000, pp.5-6

17

Figure 6: 6.1 channel reproduction set-up

A spatial auditory display instead is a system capable of reproducing sound images

positioned arbitrarily around a listener in 3-D space. When using loudspeakers, a great

number of transducers is positioned completely surrounding the listener to reproduce

the intended position. Typically the loudspeakers are then positioned forming a cube

using eight channels, one for each corner of the cube or positioned as two hexagons on

top each other built of twelve loudspeakers. Other loudspeaker set-ups like forming a

sphere out of a lot more loudspeakers is possible but difficult to build and connected to

higher costs.

For positioning of sound in 3-D space over headphones an algorithm for reproducing

the acoustical signals at the listener’s ears that would occur in the natural listening

situation is used. This method, called binaural audio simulates the HRTF and is further

explained in the next section.

2.2.2. Software Techniques for 3-D sound generation

There are three categories of software approaches for 3-D sound generation. They

especially differ in the necessary CPU power and the amount of hardware they rely on.

All of the approaches have the same audio rendering pipeline in common.

The envisaged techniques all start with a original monophonic sound.

18

This sound is enriched through audio effects occurring due to the simulated

environment it is positioned in and the physical aspects of sound propagation, e.g.

Doppler shift, reflections and diffraction. This effected sound is then positioned in 3-D

space using a specific technique.(Fig. 7)

 Figure 7 : Sound rendering pipeline

With the binaural audio reproduction algorithm a technique is described requiring

maximum CPU power but relying on the fewest hardware requirements. The binaural

reproduction algorithm uses a given HRTF to synthesise a 3-D sound imagery.

HRTFs can be measured using special microphone techniques placed in the ear canals

of a listener. Playing back a predefined sound from approximately 100 different

positions around the listener, the HRTF of one listener can be destined.

This HRTF can then be used to simulate the effects caused by the torso, head, shoulder

an the outer ear, as described in the “Introduction” chapter, when reproducing the

sound over headphones. When reproducing sound using headphones, applying HRTF

to spatialise sound, is the only possibility to create the 3-D impression since the

headphones shield the inner ear from any other influences which would be helpful for

spatialisiation under natural conditions.

A measured HRTF could be used for other listeners but would result in pour

localisation abilities.

To overcome the burden of measuring individual HRTF for each listener, averaged

HRTF can be used, still causing errors in localisation but with lower influence.

To improve the listener’s ability to perceive the sound at the position that it was

supposed to originate from it is necessary to include head tracking for a precise

capturing of the listener’s look-at point.

This has to be done, since head rotation is used for sounds to be localised within the

cone of confusion or on the median plane.24

24 cp.: Gardner, William G.: 3-D Audio Using Loudspeakers, Boston, Massachusetts Institute of

 Technology, Kluwer Academic Publishers, Norwell, Massachusetts, 1998, pp. 11-12

Uneffected
monophonic
sound

Physical
effected
sound

Spatialised and
physical effected
sound

Applying physical
audio effects

Positioning in
3-D space

19

When applying this technique to a 3-D sound reproduction system, not only the

physical effects have to be applied to the sound, in addition the HRTF has to be applied

to it, resulting in higher CPU load.

Applying the binaural technique to a stereo set-up of two loudspeakers is also possible.

Then sound is played back using two loudspeakers positioned as usually in normal

stereo reproduction. For this approach to work the listeners position has to be known in

advance to apply the right variation of HRTF. A change in position during audio

reproduction would be possible with a positional tracking delivering the actual location.

As mentioned above there is only a little space of optimal sound impression that the

listener has to stay in, limiting the listener’s movement.

Additionally reproducing sound using two loudspeakers result in cross talk, when the

emitted soundwaves addressed to the left ear reach the other ear too, causing

unpredictable influence on 3-D sound location.

This effect can be normalised using cross talk cancellation,25 resulting in further CPU

power requirements.

Using an array of loudspeakers other approaches can be used to produce a 3-D sound

imagery.

Based on the stereo sound reproduction where a virtual sound source is generated

through adjusting the amplitudes of the used two channels, there can three loudspeakers

positioned in 3-D space be used to generate a virtual sound source. Out of a set of

loudspeakers surrounding the listeners, normally in shape of a sphere or a cube, this

technique uses three loudspeakers to produce spatial sound impressions.

25 cp. : Begault, Durand R. : 3-D sound For Virtual Reality And Multimedia, Moffet Field, NASA Ames

 Research Center, Academics Press Professional, 1994, Reprint 2000, p.176

20

Figure 8 : Triangulation of loudspeakers and

loudspeaker positioning

For the technique to work the loudspeakers of the used triplet generating the virtual

source must not be in the same plane with the listener.

Combinations of triangles build of the loudspeaker array are not overlapping and the

used triangles have as short sides as possible. (Fig. 8)

Knowing the position of the virtual source to be created, the triangle of loudspeakers

around it are destined and the according amplitudes for the loudspeakers are calculated.

This technique implies a listener position in the focus of all of the used loudspeakers.

The same restriction valid within stereo reproduction for the listener position are valid

here. The optimal localisation can only be reached in a small listening area where the

listener has to stay in.

The technique is called Vector Based Amplitude Panning (VBAP) and was introduced

first by Ville Pulkki in August 2001.26

The CPU power necessary for 3-D sound reproduction can be reduced more by

simplifying the VBAP technique. Not a triangle is used to generate the virtual source

and the spatial imagery connected to it. All of the loudspeakers in the array contribute to

the reproduction of the virtual source.

26 cp.: Pulkki, Ville, Spatial Sound Generation and Perception by Amplitude Panning Techniques,

 Helsinki, Laboratory of Acoustics an Audio Signal Processing - Helsinki University of Technology,

 Espoo 2001, Report 62, 2001, pp.17-18

21

The amount of speakers, the vector between the listener position and the intended

virtual source position as well as the vector between the listener and the speaker is taken

into account when calculating the corresponding amplitude for each speaker in the

array.

This simplification leads to abridgement of calculation time and decrement of used CPU

load through leaving out the triangulation. This approach is causing the fewest CPU

load while relying on the biggest hardware demands. It is called Ambisonic Sound

Reproduction. 27

2.2.3. Headphone Versus Loudspeaker Reproduction

Comparing headphone to loudspeaker reproduction several different aspects have to be

taken into account. The aspect of ease of use is taken into account as well as the

reachable audio quality and the costs of reproduction.

The reproduction of 3-D spatial acoustic imageries using headphones is considered

optimal because of their relative immunity to acoustic detriments and the consequent

power with which a recording engineer can predict resulting perceived spatial attributes.

With substantially less efforts at least the same bandwith and the same acoustic pressure

is reachable as with loudspeaker reproduction. The intensity perceived in natural

situations can always be played back using headphones. Headphone–based displays

allow the greatest degree of control over the location of a spatial source.

Additionally the listener is shielded from any disturbing background noises and

reflections caused through a lack of sound-damping in the listening room.28 Finally,

serving audio for a great number of listeners at different locations, reproducing the same

3-D sound impression is possible using headphones.

27 cp. : Pulkki, Ville, Spatial Sound Generation and Perception by Amplitude Panning Techniques,

 Helsinki, Laboratory of Acoustics an Audio Signal Processing - Helsinki University of Technology,

 Espoo 2001, Report 62, 2001, pp.14-18

28 cp.: Begault, Durand R. : Auditory And Non-Auditory Factors That Potentially Influence Virtual

 Acoustic Imagery, Moffet Field, Human Factors and Technology Devision - NASA Amees

 Research Center, 1999

22

There are disadvantages connected to the reproduction using headphones. Obviously

the listener has to be connected to something, carrying technical equipment. Even if the

headphone is connected through infrared or is radio controlled, the listener still has to

wear the headphones themselves.

The algorithm needed to successfully implement a realistic binaural 3-D sound

reproduction uses a high amount of CPU power. Trying to base the binaural

reproduction on non individualised HRTF will alleviate the computation but result in a

imprecise localisation of 3-D sounds in space and errors in reversal, azimuth and

elevation occur.29 Moreover the headphone reproduction causes in-head localisation of

sounds, the sound seeming to originate from inside the head. This is caused by a fixed

audio reproduction neglecting the turn of the head. Capturing the look-at direction

using head tracking techniques resulting in the known disadvantages is necessary then to

overcome the inside location effect.

Headphone listening conditions can be approximated using stereo loudspeakers in

combination with cross talk cancellation as mentioned. Relying on binaural algorithms

for reproduction of a 3-D sound imagery using loudspeaker does not solve any of the

problems mentioned for headphones except for the headphones that do not have to be

carried any more. In contrast the loudspeaker reproduction using the same algorithm as

used for headphone reproduction causes more problems. Since the 3-D sound

impression will be most successful when the listener’s position is fixed an known in

advance, the listener has ideal to stay at one position. Even turning the head would

cause the destruction of the 3-D sound impression. Head tracking could be done but

there would no way to adjust the sound in that way that the averted ear would receive

the right audio cues.

While headphones were shielding the listener from any influence by the environment

the listener is in, effects like reflections or noise can disturb the sound perception now.

Other approaches for loudspeaker reproduction are available.

29 cp.: Begault, Durand R., Wenzel, Elisabeth M.: Headphone Localization of Speech, Moffet Field,

 NASA Ames Research Center, Human Factors, 1993

23

With the use of a loudspeaker array several advantages rise and some disadvantages

disappear.

Using multichannel techniques the environmental influence through e.g. reflections is

still present and cross talk does still appear, but the influence on the perceived 3-D

sound imagery is lower. The listener still has to stay in a predefined position to

experience the best impression but head tracking is no longer necessary, since the sound

source’s position is simulated and not the binaural cue at the ear drums. This leads to a

fixed virtual source resulting in natural effects at the listener’s ears when turning the

head.

The lower CPU load needed makes the reproduction of more sound sources possible or

enables more physical sound effects to be calculated in real-time resulting in a more

realistic impression.

2.3. 3-D Sound Integration in Virtual Reality Set-ups

With the integration of 3-D sound in virtual reality set-ups the existing infrastructure

actually used for virtual reality and other real-time applications can be enriched by one

dimension, the sound.

As shown in the previous chapter, the real-time computation of 3-D sound imageries

causes great CPU load. Methods for including a computational expensive real-time 3-D

sound system into an other computational high cost system needs a lot of aspects and

possibilities for adjustment to be taken into account.

”Perceptual requirement must be balanced against available resources. This process not

only involves realistic limits imposed by time and monetary budgets, but also the

technological aspect of the audio system as a whole. A designer must envision the

nature of the sound system integration requirements, in terms of hardware and software.

This task is partly on inventory of computer resources (memory, available instructions)

and external hardware, such as the effectors and sensors already in use for the visual

displays.”30

30 cp.: Begault, Durand R. : 3-D sound For Virtual Reality And Multimedia, Moffet Field, NASA Ames

 Research Center, Academics Press Professional, 1994, Reprint 2000, p.95

24

Two systems, the virtual reality system and the 3-D sound subsystem have to be

connected. The virtual reality system involves software calls to the operating system and

graphical displays as well as the reception of user input calls from any input device.

It holds the representing data structures of virtual worlds and is also responsible for

distributing software calls to other designated subsystems involved in the representation

of the virtual world. A 3-D sound system is a subsystem designated to the reproduction

of audio in general and 3-D sound in special.

The 3-D sound subsystem responds to software calls from the scenario control system

software. The scenario control system can include data from user input devices like head

tracking systems for example and is part of the virtual reality system. The 3-D sound

subsystem’s task is then to manage internally the input and output of audio, to control

data flow to other audio components, like specialised audio cards for instance, and to

distribute and route audio source signals to one of any number of components as well as

combining and mixing signals.31

The inclusion of any subsystem, respective a 3-D sound system, can be implemented

either in a integrated, a distributed or as a mixture of both, in a hybrid way.

Integrated systems consist of all of the hardware and software contained within the

same computing platform. The virtual reality application and the 3-D sound subsystem

is then running on the same machine, shortening and easing the communication

between them.(Fig. 9)

31 cp. : Begault, Durand R. : 3-D sound For Virtual Reality And Multimedia, Moffet Field, NASA Ames

 Research Center, Academics Press Professional, 1994, Reprint 2000, p.97

25

Figure 9 : Integrated System approach for 3-D sound system integration

In distributed systems the virtual reality system is running on a different machine than

the 3-D sound system. In general every service participating in the virtual reality

application can be distributed to other platforms. There could be several subsystem

combined, like a graphical subsystem for visual representation, an input subsystem for

receiving and processing user input and others.

This approach reaches in high effort for co-ordination and communication. Although

the subsystem itself is optimised for one operation, performing better than in an

integrated approach, the system can be slowed down through the immense

overhead.(Fig. 10)

Virtual Reality System

Audio Subsystem

Audio sources

Mixng

Effect
Processing

3-D Sound
Processing

Internal
communication
& coordination

User input

Ouput

26

Figure 10 : Distributed System approach for 3-D sound system integration

A precise investigation of the effort necessary for communication has to be done and to

be compared against the release of CPU time gained through outsourcing part of the

computation.

Whereas some subsystem can suffer from a distributed approach, other subsystems can

profit from it. Systems where the speed up in processing through the optimisation of a

subsystem overcomes the overhead, profit from outsourcing the corresponding

subsystem.

Hybrid systems combine a virtual reality system with outsourced subsystems that cause

high CPU load. While minimising the loss through co-ordination and communication

the win through outsourcing services is maximised.

Virtual Reality System

Audio Subsystem

Audio sources

Mixing

Effect
Processing

3-D Sound
Processing

external
communication
& coordination

User input

Ouput

Ouput

27

3. Real-Time 3-D Sound API requirements and Related Approaches

Defining minimum requirements for real-time 3-D sound APIs helps to find a common

base for developers to work on. Minimum requirements can further be used for

estimating existing APIs and classifying their quality.

In the first part requirements for 3-D sound implementations are carried together

whereas in the second part existing approaches are compared against these minimum

requirements.

3.1. Real-Time 3-D Sound API Requirements

Beside the demands for the access points, services and functions an API offers the ease

of use and the dependency on special operating systems and hardware set-ups has to be

taken into account when composing minimal requirements for an API.

3.1.1. Hardware Dependencies

A 3-D sound API should be designed to support any hardware set-up available for real-

time audio computation and audio reproduction. The key is not to rely on any specific

sound hardware components, the API has to rely on access points offered by the

operating system to access the sound hardware, neglecting the details of the hardware.

An API that does rely on specific hardware will hardly be adjustable if further hardware

becomes available. The frequency and volume of change would be too high to adjust

the API simultaneously with the progress in hardware development.

Shifting this task to the developer of audio hardware, keeps the API clear of any specific

hardware implementations and leaves the updates to the operating system and driver

development.

3.1.2. Operating System Dependencies

Opening the field of 3-D sound for a great number of developers is one of the targets

the 3-D sound API pursues. To serve all sorts of developers and application users

working on all kinds of workstations, an API must not be operating system dependent.

28

Operating system independence can only be reached using functions and software calls

that do not use any of the operating system features or services and does not rely on

programming language features the are connected to any operating system services..

Since it is a good idea to delegate the hardware access to the operating system as it was

stated above, the 3-D sound API is forced to do rely on it in the same place.

To keep the reliance on the operating system as low as possible to enable an easy and

quick translation from one operating system to others available, encapsulating the

operating system reliance in one segment of the API is desirable.

3.1.3. Access Points, Services, Functions and Components

Requirements necessary to represent naturally appearing 3-D sound processed in real-

time are reviewed.

The requirements should satisfy the expectations of most developers and consumers.

A group of hardware and software vendors and application developers founded the

“Interactive Audio Special Interest Group” (IASIG) to influence and improve the

development of platforms for interactive multimedia, in the area of 3-D sound playback.

The IASIG published a paper defining the minimal expectations to a 3-D sound API

and the sound system that the API is based on. The functionality is based on what is

possible with technology today at acceptable price points. A second paper relying on

future and high-cost technologies does widen the expectations. Although the group

does not meet any more, the expectations are still up to date.

The expectations where set-up with producing naturally experienced 3-D sound in

mind. Originating from that goal the minimum requirements have been investigated.

In a first step, only the requirements based on today’s technology are taken into

account. These are fixed in the “IASIG Interactive 3D Audio (Level 1) Requirements”.32

In order to represent the listener in the virtual world, there must be a listener object.

The listener object must be positionable in a Cartesian coordinate system.

32 cp.: IASIG, IASIG Interactive 3D Audio (Level 1) Requirements, 1998

29

The audio environment should be viewed from the perspective of the listener and

correspond with the view being depicted on the graphical display. The location of the

user’s head and the head’s orientation are key to locating the ears, needed for proper

rendering of the audio content. Hence the orientation of the listener must be settable

together with his position. For effect calculations like the Doppler shift, knowing the

velocity of the listener is important, so it has to be determinable, too.

Sound source objects then have to hold at least the same attributes as the listener,

position, velocity and orientation for directional sounds. Having the attributes of both,

the listener and the source, the relative distance and velocity between them can be

estimated and exploited in further calculations. Additionally the radiation pattern of the

sound have to be setable - the algorithm for radiation of sound is different for

directional sounds, emitting sound primarily in one direction, and omni-directional

sound.

The more of the sound sources that can be rendered in real-time at once, the better the

interactive rendering engine can produce the illusion of a realistic sound environment.

A minimum of eight sound sources processed at once should be reached by every 3-D

sound API architecture.

The object’s attributes have to be exploited – effects like Doppler shift, translating the

sound radiation model or distance attenuation have to be rendered in real-time for each

source marked for processing.

To guaranty a minimum quality standard the API rendering must be done all in real-

time at a minimum sample rate of 22050Hz using a 16bit coding scheme. There must

not be any audible latency or artefacts.

3.2. Related Approaches

Some APIs concerning the implementation of 3-D sound available for varying system

set-ups have been developed. The different approaches are introduced and the

underlying concepts are shortly explained.

This section ends with a conclusion part, summarising the obtained insight in the

approaches confronting the advantages and disadvantages of the approach and

explaining the conditions making an other API desirable and necessary.

30

3.2.1. Java 3D API33

The Java 3D API was originally designed to be used for 3-D graphic applications.

Following the philosophy “write once, run anywhere” the API is designed to be

platform independent, supporting the total set of the Java class structure. The ideas

behind Java 3D were derived from existing low-level graphic bibliographies like

Direct 3D, Quick Draw 3D and others.

For audio device support first a “Audio Device Interface” were added to the Java 3D

API. Later the audio interface was completed with the introduction of the “Audio

Device 3D Interface”.

With the introduction of the audio interfaces, accessing the hardware audio devices is

possible. For audio reproduction one or all of the offered audio devices on one machine

can be chosen as well as choosing headphones or loudspeakers for reproduction is

possible.

Details for reproduction can be set after having initialised the hardware device.

Determining the amount of loudspeakers as well as their positions is possible allowing

to take individual audio set-ups into account. To make these features available, the

abstract audio interfaces have to be implemented for every audio hardware device to be

assessable through Java 3D.

The “Sound Node Object” used for sound source representation is defined as an

abstract class defining attributes all sound source types have in common – including

attributes like the reference to the binary data, amount of repetitions, the current state

and the priority.

A “Background Sound Node” representing environmental sound and “Point Sound

Node” as well as “Cone Sound Node” for representation of omni-directional and

directional sound sources are also valid.

Effects available are at present limited to distance attenuation, reverberation and

calculating the Doppler Shift.

33 cp.: Sun microsystems, The Java 3D API specification, http://java.sun.com/, 11.02.2002

31

Since the Java 3D API does rely on Java technologies it is evenly designed to be

platform independent. The platform independence of the Java approach has been

proven in practical applications over time.

3.2.2. DirectX Audio API34

DirectX Audio is part of the complex DirectX API. DirectX Audio offers a

complete system for integration of a dynamic soundtrack using the advantages of

hardware acceleration, downloadable sounds, DirectX media objects and advanced

positioning effects.

With the DirectX Audio API simultaneously playing back several sound sources, that

can be positioned in 3D space, is possible. Sound effects like pitch changes,

reverberation or the Doppler shift are adjustable to the sounds.

For developers the API offers easy access to low-level libraries and is extensible in

function. It is available for operating systems Microsoft Windows95, Microsoft

Windows98 and Microsoft Windows2000.

Hardware devices are accessed through DirectSound or DirectSound3D drivers.

Audio data is represented mainly using two kind of objects -the “DirectSound 3-D

Buffer Object” and the “DirectSound 3-D Listener Object”.

The first is used to represent a sound source in 3-D space. It holds a sound source’s

attributes like position, orientation, processing mode, minimum and maximum distance,

gain and others.

The later object holds attributes related to the listener involved in the 3-D sound

scenario. Attributes like the listener’s velocity, his position and orientation are of great

significance for 3-D sound effect processing.

Further attributes influencing the effects being calculated can be set.

34 cp.: Microsoft, MSDN Library – DirectX, http://www.microsoft.com/directx/, 11.02.2002

32

3.2.3. OpenAL35

OpenAL stands for “Open Audio Library”. It is an approach to set-up an open library

for implementing real-time 3-D sound. The initiative did not rise out of the interests of

only one company, several companies are involved in the initial declaration of goals,

features and implementation.

OpenAL is a software interface for audio hardware access, designed to be easy to use

and to be platform independent. It fulfils the minimum requirements of the “IASIG

Level One Requirements” as well as the “IASIG Level Two Requirements”.(cp. 3.1.3)

For data representation OpenAL uses two basic objects, the listener object representing

the listener in a virtual world and the source object representing sound sources in 3-D

space, which refer to a sound buffer object, holding the binary stored data.

The listener is a unique object, whereas several sources can exist.

OpenAL offers a set of commands making positioning of the listener and the sound

sources in 3-D space as well as controlling over them possible. Since OpenAL leans on

the OpenGL specifications similar implementation techniques used there.

3.2.4. VRML

VRML as an abbreviation for “Virtual Reality Modeling Language”. It is a fileformat for

describing interactive 3-D objects and virtual 3-D worlds.

VRML is designed to be used within the internet context and in locale client server

systems. Moreover VRML is ment to be an exchange format for 3-D graphics and

multimedia content.

Further VRML is designed to fulfil the needs of authorability, composability,

extensibility, capability of implementation and performance.

While authorability and composability are primary addressed needs for building

applications using the VRML format, the aspects extensibility, capability of

implementation and performance are related to the low-level VRML implementation.

The later needs are concerned with the ability to enlarge the capabilities of the VRML

format to guaranty the executeability on every hardware system, supporting every

operating system and optimising the performance of VRML based applications.

35 cp.: Loki Software, OpenAL Specification and Reference, http://www.openal.org, 2000

33

In VRML the data is organised in a tree like structure.

The “Sound Node” is used for representing sound sources in a virtual world. It holds

information on the position, the direction, location and priority. The “Sound Node” is

connected to an “Audio Clip Node” which holds the link to the binary data as well as

attributes concerned with the audio play back.

The positioning of sound sources is only possible in the listener’s horizontal plane.

3.2.5. Conclusion

Several of the essential needs as mentioned in the first section of this chapter like high

performance and platform independence are served by the introduced APIs. However

every of these API s suffer from insufficiency in one or more of the areas most

important for a real-time 3-D API, making their use not desirable.

Pursuing the goal of developing an easy to use API for quick development of high

quality multimedia applications, with Java 3D an API was introduced, not optimised

for performance, for usability instead. As desired it is platform independent. To

implement the necessary functions for 3-D sound reproduction Java 3D uses calls to

other existing low-level APIs, causing additional latency.

Practical applications implemented in Java and compared to applications written in

other, low-level development languages, such as ‘C’, have proven, too, that Java

suffers from not being as high performing as the mentioned low-level environment.

The DirectX Audio API is more complex than the Java 3D API.

Audio hardware vendors started to implement some of the major functions offered

within the API in their digital signal processing chips used on audio cards to optimise

performance. More CPU power then is available for other tasks, like graphical

applications.

DirectX Audio suffers from being dependent on Microsoft Windows operating

system.

34

These operating systems are wide spread, but referring to the part “Operating System

Dependencies”36 an API offering general approach to the whole field of applications

should be available platform independent, opening the area for any kind of developer to

push further developments in this field of interest.

Due to the closed source concept transporting the DirectX Audio API to other

platforms is an time intensive, strenuous effort.

OpenAL was introduced to be a platform independent and high performance API.

Building an application on a Microsoft Windows platform, OpenAL simply uses a

redirect of function calls to in DirectX Audio. The redirect used to realise the

OpenAL in co-operation with Microsoft’s operating system causes further latency.

Tests have shown that programs developed using OpenAL were not portable

between operating systems. Platform independence is not realised caused by varying

calling structures and routines within the operating system dependent implementations.

Since VRML is only able to process horizontal positioned sound sources it cannot be

taken into account for a further exploration in the field of real-time 3-D sound,

although the platform independence needs are satisfied and the VRML file format is

designed open to be extendible.

With the spotted out shortcomings of the already existing approaches, designing a new

API serving all of the needs is desirable.

Since every API introduced here has advantages comparing to other approaches and

every API has special ideas on how to implement functionality, a new design will be

inspired by the already existing ones.

36 cp.: 3.2.1

35

4. 3-D Sound System Analysis

To realise the demands on a synthetic 3-D sound system, the natural 3-D sound system

must be understood. Based on an analysis a model of the natural sound system can be

visualised.

The model is then checked against applicable simplifications.

The simplified model represents the foundation for the software concept and the

implementation.

To discuss all aspects of the natural listening process a data flow diagram is the first step

in the analysis. Based on the data flow diagram the structure and meaning of the

involved data elements are determined within the data catalogue. The interaction

between the data elements is investigated and visualised in the process specification.

4.1. Data Flow Analysis

Envisioning the context of the 3-D sound system, there are at least two objects

interacting through the 3-D sound system. An object is generating a sound which is

somehow transferred to a listener who is perceiving it. (Fig. 11)

Figure 11: Context model of the 3-D sound system

Further investigating the 3-D sound system points out the environment in which the

listener is in, other objects in the environment and the sound itself are interacting,

influencing sound propagation.

3-D Sound
System

Object Listener

Sound generation Sound perception

36

Defining the sound object to be a property of an geometric object makes a separation of

the object itself and the sound object possible. (Fig.12)

The sound object is holding audio specific information represented in it’s attributes and

the graphical object is containing information about the physical aspects of the object

itself.

Figure 12: Refinement of the 3-D sound system

The sound object is then responsible for the creation of the sound wave. The object’s

physical attributes are influencing the sound wave. Additionally the sound wave is

influenced by the environment the sound is propagating in.

The influence on the sound wave is impairing the sound propagation.(Fig.13)

Figure 13: Refinement of “propagate sound”

Sound

Object Environment

Sound perceptionSound generation propagate
sound

Sound

Object

Environment

Sound perceptionSound generation

1. create
sound wave

3. calculate
sound wave
propagation

Sound wave

2. influence
sound

propagation

37

For the creation of a sound wave the physical attributes of the object as well as the

attributes of the sound object have to be taken into account. Based on these

information the direction for sound propagation can be determined and one oscillator

can be generated. Combining the oscillator with the propagation direction makes the

emission of a sound wave possible. (Fig.14)

Figure 14: Refinement of “create sound wave”

After initial creation of the sound wave it is manipulated by the environment and

objects in it as mentioned before. Depending on the sound wave’s -, the object’s - and

the environment’s properties the manipulation is performed.

Objects are able to damp, diffract or reflect sound waves while the sound waves is

reaching the object interacting with it’s surface. Sound wave reflection is also possible.

When reflecting a sound wave either all of the sound wave or part of it is reflected

appearing to the listener to be an extra sound source. Frequency shift through

interaction between objects and sound waves is possible, too.

Through propagation in the environment the sound wave is attenuated or slowed down

by the influence of the environment itself. (Fig. 15)

Sound

Object

1.1 evaluate
properties

1.3. create
initial

oscillation Sound wave

1.2 evaluate
propagation

direction

Position
Orientation

Geometry

Material

Volume

Frequency

Intensity

1.4 propagate
oscillation

Propagation direction

Oscillation

38

Figure 15: Refinement of “influence sound propagation”

Continuously the sound waves propagate through the environment. For every time step

an image of the current sound wave can be taken, describing the sound wave.

These images can be interpreted by the listener. The sound wave’s properties include

psychological as well physical attributes about the sound and the object that emitted that

sound. (Fig. 16)

Sound wave

Object

2.1 evaluate
propertiesEnvironment

Material

Position

Geometry

Orientation

Volume

2.5 damp
sound wave

2.6 diffract
sound wave

2.7 reflect
sound wave

2.9 apply
frequency

shift

2.8 calculate
reflection

sound wave

Sound
reflection

Temperature

Intensity

Frequency

Direction

Humidity

Density

Intensity

Frequency

Direction

2.2 attenuate
sound wave

2.4 influence
frequency

39

 Figure 16: Refinement of “calculate sound wave propagation”

4.1.1. Data Flow Simplification

Making an API available for a wide spread variation of audio reproduction hardware set-

ups, the API must consider low performance set-ups as well as professional systems for

sound reproduction. This consideration makes an modular solution necessary.

The API must have a base kernel offering the minimum functionality for 3-D sound

reproduction in real-time. This kernel must be designed to be executable on standard

system set-ups. Additional features implemented in extension modules must be

integrable on user demand for more efficient hardware set-ups.

Taking a modular implementation as a basis for a real-time 3-D sound API,

simplifications of the model developed in the preceding part have to be applied to

reduce the model to the minimum to find the demands on the kernel implementation.

Minimising the model requires the definition of minimal features.

Sound

3.2 calculate
change over

time

Covered distance

Sound wave

3.1 evaluate
properties Initial intensity

Listener

3.3 evaluate
properties

Psychological properties

Physical properties
3.3 perceive

sound
Sound perception

40

Although the requirements defined by the IASIG in the “IASIG Interactive 3D Audio

(Level 1) Requirements” 37 are designated to be minimum requirements for an API to be

considered as an real-time 3-D sound API, the requirements are beyond the minimum.

Hearing a sound in nature, the listener intuitive finds himself answers to two questions.

What kind of object is emitting the sound and where is the sound coming from?

These two questions can be determined to be the questions the 3-D sound API kernel is

all about.

Further questions are not directly connected to the sound in 3-D space or can be

simplified through a reformation of the basis questions.

Answers to the question for the kind of object emitting the sound can easily be found.

A known object produces known sounds. Identifying a known object is simple. The

nature of unknown sounds on the other hand is characteristic for the object they

originate from, leading to an assumption about the object’s size and nature although not

knowing the object in detail.38

Locating the object’s location and thereby answering the question of determining the

direction the sound is coming from is done in a second investigation.

While information about the object’s characteristic can be obtained for known as well

for unknown sound sources, determine the distance to the sound source is more

difficult. Even for known sounds the human distance perception is weak. For unknown

sounds it is almost impossible.

Human distance perception is primarily derived from the sound’s loudness. The

memorised original sound pressure at minimum distance is thereby compared against

the actual perceived sound intensity.

Using an artificial technique for sound reproduction like done in the 3-D sound API

approach, only the headphone reproduction can always guaranty to reproduce a sound

with the same sound pressure as perceived under natural conditions. Nevertheless even

if the natural reproduction is possible it is seldom applied.

37 cp. Section 3.1.2

38 cp. Section 2.1.1

41

(Hearing a plane’s turbine placed close to your visual representation’s ear with the same

sound pressure as it appears in nature is not desirable.)

With this restriction, every sound being played back using an artificial technique must be

considered to be unknown, since the listener has no reference loudness to derive the

distance from, resulting in almost impossible distance perception.

Since distance perception is almost impossible, no matter what kind of hardware set-up

is used, it does not have to be supported by the API kernel.

The perception of direction relies on the interaural time and intensity differences

between the listener’s ears. Besides the known limitations, determine a sound’s direction

is precise for known sounds as well as for unknown ones. 39

Concentrating on information about the sound source itself, questions about the

environment the source is in can be kept out of the kernel implementation as well as

influences on the perceived sound by other objects.

Neglecting the influence by the environment and imagine the object that emits the

sound to be the only one, eliminating other objects’ influence in the same step, only the

initial sound wave and the corresponding objects properties regarding it’s position and

orientation have to be taken into account.

The applied simplifications lead to a minimised system model. Thus making a high

performance API kernel for low hardware resources possible.

Based on the same context model the refinements are simplified by deleting the aspects

originating from the environment and other objects. Neither the influence on the initial

oscillator nor the sound propagation have to be taken into account. (Fig.17 – Fig.21)

Figure 17: Context model with simplifications

39 cp. Section 2.1.2

3-D Sound
System

Object Listener

Sound generation Sound perception

42

Figure 18: Refinement of the 3-D sound system
with simplification

Figure 19: Refinement of “propagate sound”
with simplification

Figure 20: Refinement of “create sound wave” with simplification

Sound

Object

Sound perceptionSound generation propagate
sound

Sound

Object

1.1 evaluate
properties

1.3. create
initial

oscillation Sound wave

1.2 evaluate
propagation

direction

Position
Orientation

Frequency

Intensity

1.4 propagate
oscillation

Propagation direction

Oscillation

Sound

Sound perceptionSound generation

1. create
sound wave

2. calculate
sound wave
propagation

Sound wave

43

 Figure 21: Refinement of “calculate sound wave propagation”
with simplification

4.2. Data Catalogue

As shown in the previous section the object emitting the sound, the sound itself, the

sound wave and the listener are the components influencing the perceived sound

impression.

Individual data flows originating from or flowing to the involved object’s and caused by

other processes or extern influences contribute to the sound propagation process and

the included sub processes.

Based on the simplified model the data aspects of the involved objects are investigated

and abided in the data catalogue.

SoundGeneration = Object + Sound *The Object attributes and the sound

 properties are considered for sound generation*

SoundPerception = PsychologicalProperties + PhysicalProperties

PsychologicalProperties = *Individual feeling of the perceived sound*

PhysicalProperties = Direction + Intensity + Frequency *Attributes of the

 arriving sound wave*

Listener = Position + Orientation *Position and orientation are the

 essential listener cues needed for sound perception

 simulation*

Sound

3.2 calculate
change over

time

Covered distance

Sound wave

3.1 evaluate
properties Initial intensity

Listener

3.3 evaluate
properties

Psychological properties

Physical properties
3.3 perceive

sound
Sound perception

44

SoundWave = Sound + Direction *Sound propagating in a certain

 direction*

Sound = Oscillation + Intensity *Oscillation with time dependent

 intensity *

Oscillation = Position + Frequency *Position the oscillator is placed at

 oscillating with a certain frequency*

Object = Position + Orientation *Orientation influences sound

 propagation*

CoveredDistance = Number *Distance the sound wave has progressed*

InitialIntensity = Number *Initial amplitude of the oscillator’s vibration*

Intensity = Number *Amplitude of the oscillator’s vibration*

Frequency = Number *Vibrations of the oscillator per second*

Propagation direction = PointIn3D *Direction the sound waves propagates in*

Position = PointIn3D *Position the object/listener is stationed at*

Orientation = PointIn3D *Point the the object/listener points to / the

 sound wave propagation is directed to*

PointIn3D = CoordinateValue + CoordinateValue + CoordinateValue

 A point is specified by the x,y,z coordinate values

CoordinateValue = Number

Number = *any number*

4.2.1. Data Catalogue Simplification

The scope of this thesis is about sound representation and reproduction of 3-D sounds.

The sound syntheses including the investigation of the sound’s nature, the initial

oscillator creation and the sound propagation calculation is beyond the thesis’ point of

concern.

Sound is taken to be given in binary format, representing an already synthesised sound.

The data aspects of “SoundGeneration”, “SoundWave”, “Sound” and “Oscillation” and

the underlied data elements are externalised then.

The artificial sound generation deals with the sound reproduction at the position and in

the direction given by the corresponding object.

The “Psychological Properties” are encoded in the binary sound representation.

45

Based on theses assumptions the data catalogue is reduced to the base aspects in a next

step.

Listener = Position + Orientation *Position and orientation are the

 essential listener cues needed for sound perception

 simulation*

Object = Position + Orientation *Orientation influences sound

 propagation*

SoundGeneration = Sound + PhysicalProperties *Sound reproduction at the

 position and in the direction given by the corresponding

 object hold in the physical properties*

Sound = *Binary pre sampled audio* + PhysicalProperties *The

 physical properties are kept for quick access*

PhysicalProperties = Direction + Intensity + Frequency *Attributes of the

 arriving sound wave*

Intensity = Number *Amplitude of the oscillator’s vibration*

Frequency = Number *Vibrations of the oscillator per second*

Position = PointIn3D *Position the object/listener is stationed at*

Orientation = PointIn3D *Point the object/listener points to / the

 sound wave propagation is directed to*

PointIn3D = CoordinateValue + CoordinateValue + CoordinateValue

 A point is specified by the x,y,z coordinate values

CoordinateValue = Number

Number = *any number*

46

4.3. Process Specification

Through the applied simplifications the kernel processes are reduced to three main

processes. The assumptions made in the previous sections are valid here, too. The

consideration of processes related to sound synthesis is unnecessary.

The process specification is done using structured formulation technique.

The procedure of “evaluate properties”, “propagate oscillation”, and “perceive sound”

are described within this section. The described processes are identified to be the

essential ones for the kernel.

evaluate properties :

 For Listener

 get listener’s position

 get listener’s orientation

 For Sound

 get sound’s binary sound data

 get sound’s physical properties

 get sound’s properties’ direction

 get sound’s properties’ intensity

 get sound’s properties’ frequency

 For Object

 get object’s position

 get object’s orientation

propagate oscillation :

 get properties of the object emitting the sound

 get listener properties

 IF object is within listening range of listener

 IF listener is within the direction the object’s orientation

 evaluate distance between listener and object

 initialise sound with initial intensity and frequency

47

 ELSE

 do not initialise sound

perceive sound :

 get listener properties

 get sound properties

 evaluate angle between listener’s orientation and the sound’s direction

 FOR both ears

 evaluate time difference to other ear

 evaluate intensity difference to other ear

 IF ear’s corresponding intensity > 0

 evaluate HRTF for the ear

 adjust sound based on the initialised sound using the

 ELSE

 totally attenuate the sound

 reproduce the adjusted sound

5. Hardware Set-up and Integration

For an API implementation a hardware set-up must be available supporting 3-D sound

reproduction in real – time.

Estimating the requirements on a hardware set-up for a 3-D sound system has to take

into account the context in which the system integrates in as well as the used audio

reproduction technique.

The current virtual reality infrastructure at the Fachhochschule Wedel where the 3-D

sound system will be integrated is introduced in a first phase as foundation for further

concerns.

The following investigations leading to the chosen hardware set-up are divided into two

steps. The requirements on the computational unit investigates the requirements on the

computer system used for calculations and audio data playback are investigated in the

first step.

48

For best integration in the given infrastructure the usability of different audio

reproduction techniques is estimated in a second step..

The system requirements and the chosen audio reproduction technique lead to the final

system configuration and operating system.

The last phase visualises the system’s integration and operation in the existing

infrastructure.

5.1. Available Virtual Reality Infrastructure

The 3-D sound system has to be composed to fluently integrate into the available virtual

reality structures. Reaching a proper integration makes the understanding of the already

available system necessary. The infrastructure and communication pipelines of the

virtual reality laboratory installed at the Fachhochschule Wedel are described in this

section.

The 3-D sound system is planned to operate in co-operation with the display system

and the underlying structures.

The centre of the available distributed virtual reality system is formed by an SGI

Onyx2 Infinite Reality 2 engine. The system is in particular used to control a large-scale

stereo projection system. The projection system, a TAN Holoscreen, uses two

projection units projecting on two screens. A vertical screen, accessed through backside

projection, and a second horizontal screen, accessed through forefront projection, are

used to generate an immersive display system. (Fig.22)

49

 Figure 22: Immersive Display System (TAN Holoscreen) at the
virtual reality laboratory, Fachhochschule Wedel

The main virtual reality application is executed on the Onyx2. Services offered by

distributed system components factor into the application’s execution.

An input device, a Polhemus tracking system, attached directly to the Onyx2 delivers

position and orientation data captured through an electromagnetic tracking system.

Further a PC based system running under Windows NT offers motion capturing data,

extracted from four installed infrared cameras attached to the PC. The PC itself

communicates with the Onyx2 over ethernet. (Fig.23)

 Figure 23: Distributed Virtual Reality System at the Fachhochschule Wedel

Polhemus
Position / Orientation
Tracking

ART
Motion
Tracking

SGI Onyx2
Infinite Reality2

VR-Application

IR Cam

IR Cam

IR Cam

IR Cam

Projection 1
(vertical)

Projection 1
(horizontal)

Serial connection
Ethernet

50

5.2. Hardware Requirements

3-D sound integration in virtual reality applications can be done based on a distributed

as well as on an integrated system approach.

For future demands the system must be configurable to operate as a stand-alone

integrated virtual reality system including 3-D sound functionality and it must be

operateable within a distributed virtual reality system offering 3-D sound as a service.

Being adjustable to either a stand alone or a distributed system the API’s functionality

on both set-ups can be tested and proven using one hardware set-up.

Operating as a stand alone system the hardware must offer enough CPU power to serve

the needs of the virtual reality application in addition to the needs of the 3-D sound

calculations.

High performance graphic cards can contribute to release the CPU through operations

encoded within the graphic card’s chipset (e.g. Nvidia).

There must be no interruptions while playing back audio. To avoid disturbance during

playback the binary audio data has to be present in the systems memory, leading to a

great need for RAM. In case the RAM is insufficient and mechanisms of virtual memory

allocation are used a fast system hard disk with large disk cache is necessary.

5.3. Audio Reproduction Evaluation

Following the path of relying on wide spread hardware, a simple two channel audio

reproduction using loudspeakers or headphones would be the first choice.

Since the system developed within this project is designated to be used within the

existing infrastructure of the virtual reality facilities a reproduction technique has to be

chosen that fits in best.

A virtual reality application being visualised using the Holoscreen requires the user to be

placed on the horizontal plane.

Within the horizontal plane the user is free to move within a certain area, exhausting the

range of the Holoscreen’s immersiveness.

51

A headphone reproduction would restrict the user’s liberty of action through known

reasons.40 With a two channel loudspeaker reproduction the sound adjustment to the

user’s orientation and position would only be applicable to a certain point.

Only a multichannel reproduction based on a loudspeaker array can serve the demands

for 3-D sound reproduction.

An array surpassing the horizontal plane must be chosen to result in a realistic 3-D

sound impression.

Placing eight loudspeakers in each corner of a cube formed through six planes with the

size of the horizontal and vertical plane of the installed Holoscreen results in the best

3-D sound impression.41 (Fig.24)

Figure 24: Integrated system set-up using an additional video projector

for integrating the vertical screen and loudspeaker array of eight speakers

forming a cube

The eight speaker cube makes sound adjustment through head movement or change in

position possible, giving the user the liberty to move freely within the area of the

horizontal plane.

40 cp.: Section 2.2.3

41 cp.: Section 2.2.2

52

5.4. System Configuration

Based on the hardware requirements and the audio reproduction evaluation the system

can be composed. The configuration must be adjustable to behave like wide spread of

the shelf systems on the one hand but must offer high performance for best 3-D sound

impressions on the other hand if needed. The demand for being adjustable can be

bypassed configuring two different systems but can easy be implemented using one set-

up minimising the costs.

As PC based system can be considered to have the widest divulgence, using a PC layout

composition is worthwhile.

Adjusting CPU power to simulate lower performance system can be implemented using

a dual processor mainboard featuring two CPUs. Through inactivating one of the CPUs

the available processing power is approximately halved but can be maximised at will

with no effort.

For graphic visualisation an average graphic card supporting the Nvidia chipset is

chosen to release the CPU since it can be assumed that potential users of virtual reality

applications tend to have a graphicaly optimised computer system.

For audio reproduction no standard audio card can be used, since there are no of the

shelf cards featuring full range eight channel audio reproduction.

The variety of loudspeakers is retrenched through the installed electromagnetic tracking

system. Only loudspeakers with minimal influence on the electromagnetic field causing

minimal tracking error can be taken into account. Investigations have shown that PC

loudspeaker systems caused the lowest influence on the tracking system.

Other components are composed using standard equipment, completing the

configuration.

53

System key features :

Mainboard : MSI 694D Pro2 – IR

 Supports Dual Socket 370 for Intel® III Processors at

 500MHz~1.13GHz.

CPU : Genuine Intel X86 Family 6 Model 8, 1.00GHz

RAM : 512MB SDRAM

Hard disk : 1 x 8GB IDE IBM (System disk)

 2 x 40GB IDE IBM ST38421A (data)

Graphic card : Hercules 3D Prophet II GTS 32MB

 Nvidia GeForce 2 chipset

Audio card : RME Digi 9652 + RME AEB8-O extension board

 RME Digi 9652 offering 24 digital out audio channels

 RME AEB8-O offering a eight channel DA converter

Speaker : 8 x Wavemaster Blasterbox 240

 240 Watt full range active loudspeakers

Best driver support for the chosen audio and graphic card is offered for Windows98

second edition. Since a system using only one CPU should be simulated to guaranty the

API’s usability on common computer systems, Windows98 is a good choice due to

the fact that it is optimised for single processor systems, incapable of using a secondly

installed CPU.

5.4.1. System Integration

Implementing the kernel functionality and proving it’s usability is the primary goal of

the first API development phase. The kernel functionality is designed to perform on

standard systems within an integrated virtual reality system as it can be found in most

implementations.

Integrating the composed system into the available virtual reality infrastructure is

therefore not desirable in a first step to maintain realistic conditions, while setting up

stronger restriction on the available CPU resources for 3-D sound at the same time.

54

For an integrated approach a video projector is attached to the system to take advantage

of the Holoscreen’s vertical screen and the symmetrical loudspeaker installation.(Fig.24)

The virtual reality application as well as the 3-D sound generation is performed on the

composed system.

Integration into a distributed virtual reality system is nevertheless applicable.

For integration into the available distributed virtual reality infrastructure the audio

subsystem would be accessible over ethernet, offering 3-D sound services for the virtual

reality application running on the Onyx2. (Fig.25)42

Figure 25: 3-D Sound System integration into a distributed virtual reality system

42 cp.: Section 8.2

Polhemus
Position / Orientation
Tracking

ART
Motion
Tracking

SGI Onyx2
Infinite Reality2

VR-Application

IR Cam

IR Cam

IR Cam

IR Cam

Projection 1
(vertical)

Projection 1
(horizontal)

Audio System

3D Sound generation

Speaker

Speaker

Speaker

Speaker

Speaker

Speaker

Speaker

Speaker

Serial connection
Ethernet

55

6. API Design

The API design works on the software engineering aspects of the API.

The preparatory work lead to the final coding of the API software realisation.

Basic communication deliberations based on the chosen hardware set-up and the

operating system are performed first.

Having determined the API’s position within the operating system structure, approaches

to realise the real – time 3-D sound requirements are drafted and an existing approach

contributing to the realisation is introduced and examined.

Rest upon the contributing approach the data aspects of the 3-D sound implementation

are derived from the data catalogue and the sequence of events within a 3-D sound

session is introduced.

The API design finishes with the software encoding in ‘C’. Special assumptions made

within coding are summarised and the major algorithms are explained in the last part.

56

6.1. Layer model

To guaranty an easy adjustment to varying operating systems and hardware set – ups an

integration into the existing operating system, hardware and driver layer model is

desirable.

The layer model describes existing modules in the system as well as the communication

pipelines between them. The concept of the layer model allows the virtual reality

application to be placed on top of the layers thus being independent of any restrictions

and specifications except for the 3-D sound API. Additional hardware access (e.g.

display devices) is possible but not necessary for audio devices.

Layers are dependent on layers at the same level or at levels below, only. A re –

utilisation of modules in other contexts is thereby enabled.

The 3-D sound API is integrated on top of the operating system and hardware layers,

below the virtual reality application. (Fig. 26)

Figure 26:Layer Model 3-D sound integration

Hardware Access Point

Operating System

3-D Sound API

Virtual Reality
Application

57

6.2. 3-D sound requirement implementation approaches

Basic requirements on a 3-D sound API determined within the 3-D sound

requirements43 are fundamental for further 3-D sound concept advisements.

To free the API from hardware dependencies the use of drivers, is to be implemented

within the API implementation.

The API then is restricted to be used with hardware components that have driver

support for the actual operating system available. The API implementation can rely on

operating system wide access routines to control the hardware, identical for differing

audio hardware components. This leads to a pure operating system dependency without

hardware specific restrictions.

The operating system dependencies are to be encapsulated within a module as a part of

the 3-D sound API. This approach allows easy adjustment for transportation to

different systems. The implemented module is used by the 3-D sound API itself as well

as it can be used from outside by other software components.

The modular approach within the 3-D sound layer allows further modules necessary for

3-D sound implementation to be added to expedite the API’s adjustability and reuse.

43 cp.: Section 3.1

58

Combining the modular approach and the layer model leads to a more adjustable and

more open layer model.(Fig. 27)

Figure 27: Modular Layer Model

6.3. PortAudio API

Researching available sound APIs and investigating their communication models, an

API strictly fulfilling the requirements, restrictions and specifications of the targeted 3-

D sound API has been exposed.

PortAudio (Portable Audio Library) is a cross platform, open-source, audio I/O library.

It supports writing simple audio programs in 'C' that will compile and run on Windows,

Macintosh, Unix(OSS), SGI, and BeOS.44

Portaudio can be integrated in a real – time 3-D sound API as a module implementing

the hardware access and the operating system dependencies. The real – time 3-D sound

API can use PortAudio and can be interpreted as a PortAudio 3-D extension(Fig.28)

(In the following the developed 3-D sound API is declared as PortAudio 3-D

extension.)

44 cp: http://www.portaudio.com, 11.02.2002

Virtual Reality
Application

3-D Sound API

OS dependent
module

3-D sound
implementation
module

Operating System

Audio HW
driver

Hardware Access Point

59

 Figure 28: Modular 3-D sound layer using Portaudio

Within PortAudio hardware access is implemented taking hold on ASIO, MME and

DirectSound for Windows, ASIO and Soundmanager for Macintosh, OSS for Unix

and AL for SGI.

To build on Portaudio an analysis of the data structures and processes must be be

performed.

6.3.1. PortAudio Analysis

For hardware access PortAudio offers the possibility to initialise streams connected to

audio devices for audio output.

The use of several devices in parallel is possible and can be used to perform a multi

device audio reproduction.

For controlling the initialised audio device streams, control functions are provided. The

use of start and stop functions effectuate the corresponding audio device stream

processing to be started or stopped.

PortAudio is using a callback approach to feed the audio device streams with binary

audio data. Callback functions are to be defined by developers using PortAudio within

their application and are called continuously until stream processing is stopped.

The callback function call is controlled using interrupt technologies or low level

processes and is implemented in the PortAudio API.

3-D Sound API

Portaudio
module

3-D sound
implementation
module

60

6.4. PortAudio 3-D Extension Data aspects

Based on the 3-D sound system analysis including the data catalogue, necessary data

structures and methods to manage and access these structures are developed.

The necessity of data objects as well as their structure in detail and service functions

necessary for conveniently accessing and manipulating these objects are argued.

6.4.1. Data structures

Deriving from the 3-D sound system analysis, essentially three objects are influencing a

virtual 3-D sound world.

A listener, the sound source object as well as the graphical object corresponding to the

sound source object have to be represented.

The listener object is representing the application user in the virtual audio world. It has

to correspond with the virtual graphical representation. The listener object is taking over

the graphical representation’s properties broadening them through inclusion of audio

specific properties.

A sound source is connected to a graphical object and influenced through it’s properties

like position and orientation. Typically the graphical object is represented in the virtual

reality application, thus making a redundant representation of the graphical object

unnecessary. Merely the properties influencing the sound source have to be managed

within the 3-D sound API. These properties are taken over to be properties of the

sound source object itself.

The sound source’s properties are additionally enriched through the binary audio data

needed for audio playback. For known reasons binary data has to be stored within

system memory thus making data structures necessary.

The complexity of binary audio data lets a management structure in terms of a audio

buffer object appear suggestive. (Fig.29)

61

6.4.2. Data Access and Service Routines

Despite the minimal amount of object types, the total amount of objects to be managed

can quickly surmount the administerable boundary leading to developer’s confusion.

Within application progress 1 (listener) + n (source) + m (buffer) objects have to be co-

ordinated. Although the amount of objects is reduced with sound sources using the

same buffer, service routines are exigent necessary to alleviate the data management

through offering a central access point and object manipulating functions.

Introducing a 3-D sound system object representing the central access point reduces the

application developer’s efforts to managing only one object. Using offered service

routines the developer can access and manipulate the listener-, any sound source- and

any buffer object through one access point.

In addition to serving as central access point, the 3-D sound system is used to hold user

specific environment information regarding the audio reproduction facilities and the

user’s preferred audio data representation and reproduction.

For modularisation purposes the environmental data is kept in an additional

environment object.

The objects’ conceptual structures and relations are visualised using OMT notation.

The final implementation does include additional secondary routines and properties not

relevant for conceptual purposes therefore not included here45 (Fig.29)

45 cp.: Todt, Severin S., PortAudio 3-D Extension Dokumentation, VR4 Lab, Wedel, 2002

62

Figure 29: Conceptual OMT Diagram Pa3D System

6.4.3. Listener Object

In every generated 3-D sound system one unique listener object exists.

The listener object is generated within the initialisation phase of the 3-D sound system

and is being destroyed with it’s termination.

The listener object is coercive necessary over the period of the 3-D sound system’s

existence since it’s representing the user in the virtual auditory world. Hence routines

for listener creation and destruction are designed for internal use only and must be

protected against application developer access to avoid undefined situations.

For manipulating the listener’s properties, further service routines are offered.

The listener object can be referenced using the 3-D sound system object. Manipulation

is done using set and get methods.

Listener Object
void translateListener
void rotateListener
int[3] getPosition
void setPosition
int[3] getOrientation
void setOrientation
int[3] Position
int[3] Orientation

Source Object
void createSource
void destroySource
void addSource
void deleteSource
void translateSource
void rotateSource
int[3] getPosition
void setPosition
int[3] getOrientation
void setOrientation
int[3] Position
int[3] Orientation
Buffer Buffer

Buffer Object
void createBuffer
void destroyBuffer
void addBuffer
void deleteBuffer
int length
int[] | float[] samples

Environment Object
int DeviceAmount
DeviceInfo[] AudioDevices
int ChannelAmount
ChannelInfo AudioChannels
SampleFormat AudioDataType
ReproductionSetup AudioReproductionSetup
ReproductionAlgorithm AudioReproductionAlgorithm

pa3D System Object
Listener Listener
Source[] SourceArray
Buffer[] BufferArray
Environment Environment

63

For listener movement the listener object is to manipulated using translate and rotate

functions. The translate and rotate functions’ name originate from names used within

OpenGL to ease the sound implementation for OpenGL developers.46

6.4.4. Source Object

The great amount of possible source objects is managed within the 3-D system object in

a sound source list.

Sound source object creation and destruction is done on application developer’s

demand using the offered service routines to add or remove sound sources to or from

the 3-D sound system’s sound source list.

To manipulate a selected sound source the sources can be accessed through an access

function, delivering the reference to a sound source. For source identification a textual

description given by the developer is used.

For sound source movement translate and rotate functions, according to the listener’s

functions are offered.

6.4.5. Buffer Object

Corresponding to the source objects the buffer objects are managed within a list as part

of the 3-D system object.

Buffer objects are created using a creation service routine which is allocating memory

and reading the binary audio data from a file. Destruction is done deleting the buffer

from the buffer list.

Adding and deleting buffers is done equivalent to the sound sources’ proceeding.

46 cp.: Todt, Severin S., PortAudio 3-D Extension Dokumentation, VR4 Lab, Wedel, 2002

64

6.5. PortAudio 3-D Extension Application

A regular PortAudio (not PortAudio 3-D Extension) application requires the execution

of six steps to be processed successively:47

 1. Writing a callback function that will be called by PortAudio when audio processing is

 needed.

 2. Initialising the PA library and opening a stream for audio I/O.

 3. Starting the stream. The callback function will be now be called repeatedly by PA in

 the background.

 4. Within callback data can be written to the output Buffer.

 5. Stopping the stream by returning 1 from your callback, or by calling a stop function.

 6. Closing the stream and terminating the library

Step 1 and 4 require knowledge about digital audio processing to implement the needed

functionality.

To ensure best results, correct processes and minimal effort for the developer the digital

processing needs are implemented within the PortAudio 3-D Extension API.

Pure audio play back is based on equal procedures for every participating device

functionality, thus enabling an automation.

The developer is totally freed of any digital audio processing knowledge to concentrate

on the virtual reality application’s demands through applied automation in meanings of

offering predefined callback functions for each of the user defined devices.

Using the PortAudio 3-D Extension API, to implement a 3-D sound application, the

developer merely needs to perform four steps.

 1. Initialising the PortAudio 3-D Extension library

 2. Creating sound sources to be reproduced and the corresponding buffers

 3. Starting 3-D sound processing

 4. Stopping 3-D sound processing

47 cp.: http://www.portaudio.com, 11.02.2002

65

6.6. PortAudio 3-D Extension Implementation in ‘C’

Since the PortAudio 3-D Extension is based on and uses PortAudio the same

programming technique is used for implementation.

The API is composed in ANSI C compilable using a C++ compiler.

Using ANSI C a ceiling of platform independence is reachable. Coding is done taking

further differing C type interpretation on different machines into account.

The use of ANSI C makes the conceptual data structures impossible to implement.

Objects are not implemented as objects in a object oriented programming manner.

Structs holding relevant data are used to implement the data concepts.

To gain a maximum in adaptability thus pandering the transportation to different

operating systems, the modular concept is continued within the API implementation.

The main functionality, implemented using platform independent code is enclosed in a

“pa_3d” module. It includes the service routines as well as the object data structures and

the rudiment for initialisation, audio play back and termination.

Initialisation, audio play back and termination need to use operating system and

hardware dependent code. The dependent code is captured in separate modules.

Operating system dependencies exceeding the dependencies treated with in the

Portaudio API are kept in one module. The API’s kernel uses threads which are to be

implemented dependent on the operating system. Since no other operating system

dependency appear within the first approach, the module “pa_3d_thread” keeps hold of

the code pieces dependent on the operating system.

Depending on the amount of available devices and channels, the callback functions used

for audio play back have to be realised. Hence callback functions are dependent on user

specifications realised within the “specifications” module. (Fig.30)

Figure 30: Portaudio 3-D Extension Modules

3-D Sound API

Portaudio
module

Thread
module

Specifications
module

Pa3D
module

66

6.7. 3-D Functionality Algorithms

The Algorithms used within the Portaudio 3-D Extension for initialisation, sound

source generation, buffer generation as well as for audio processing can be identified to

be the major functions for 3-D sound implementation thus being described in detail.

Furthermore the sound source and listener movement are explained in more detail.

6.7.1. Initialisation

The initialisation process determines the available devices within the system and

initialises the hardware corresponding to the user defined specifications.

The hardware‘s data structures and values are stored within the allocated 3-D sound

system object.

Further the listener object is allocated and initialised. The listener is determined to be

positioned in the virtual world’s origin. Within sound processing a listener oriented

Cartesian coordinate system is presumed.

Sound source and buffer list are initialised as empty lists.

Initialisation progress in detail :

allocate SOUND_SYSTEM_OBJECT

initialise SOUND_SYSTEM_OBJECT.environment with user audio format \

 specifications and device definitions

check available devices

FOR each DEFINED_DEVICE

 get device information from system

 IF DEFINED_DEVICE available

 initialise SOUND_SYSTEM_OBJECT.environment.DEFINED_DEVICE \

 with system device information

 activate DEFINED_DEVICE

 FOREACH DEFINED_DEVICE_CHANNEL

 allocate memory for CHANNEL_BUFFER

67

 initialise SOUND_SYSTEM_OBJECT.environment. \

 DEFINED_DEVICE.speaker_pos with user specification

 ENDFOREACH

ENDFOR

initialise spatialisation.algorithm with user specification

allocate LISTENER_OBJECT within SOUND_SYSTEM_OBJECT

initialise LISTENER_OBJECT.position with (0,0,0)

initialise LISTENER_OBJECT.position with (0,0,-1)

allocate SOURCE_ARRAY within SOUND_SYSTEM_OBJECT

allocate BUFFER_ARRAY within BUFFER_SYSTEM_OBJECT

6.7.2. Sound Source Generation

Sound source generation allocates memory for a sound source object and initialises it

with centre position and non iterating play back.

The binary audio data property is initialised using a given reference to a buffer object.

Sound source generation progress in detail :

allocate SOURCE_OBJECT

initialise SOURCE_OBJECT.position with (0,0,0)

initialise SOURCE_OBJECT.position with NO_LOOP

initialise SOURCE_OBJECT.binary_data with given BUFFER_OBJECT reference

6.7.3. Buffer Generation

Buffers are generated allocating memory for a buffer object holding no samples.

While reading a given file holding the audio data, memory for storing it within the

buffer object is reallocated with every sample being read.

68

Buffer generation in detail :

allocate BUFFER_OBJECT

initialise BUFFER_OBJECT length with 0

open given audio file

WHILE not end of file

 read 1 sample

 BUFFER_OBJECT.length = BUFFER_OBJECT.length +1

 BUFFER_OBJECT.binary_data =

 BUFFER_OBJECT.binary_data + read sample

ENDWHILE

close file

6.7.4. Audio processing

With starting 3-D processing48 all device streams are opened and thereby prepared for

audio play back. With opening the devices’ streams the devices’ callback functions are

called repetitively through PortAudio’s play back routine.

The callback functions implemented within the PortAudio 3-D Extension API are

mixing a device’s channel buffers down to one, writing into the device stream.

Each of the channel buffers are filled by a process routine which is providing the audio

data considering applicable audio effects, the source’s position and the user specified

audio reproduction technique.

Since the process routine is writing to the channels’ buffers and the callback functions is

reading the same buffers, the processes have to be synchronised.

Synchronisation is necessary for parallel processing as well as for parallel memory

access. For parallel processing the processing routine is running within an own thread.

The repetitive call of the callback functions, implemented within the Portaudio API is

either controlled using low level processes or interrupts.

48 cp. Section 6.5

69

The implementation using low level processes requires both processes to be operated

with the same priority for equal distribution of CPU power.

For memory access synchronisation cyclic buffer memory is established for each

channel buffer. With the start of 3-D sound processing the processing thread is filling

each of the channels’ cyclic buffers. In a second phase the mechanism for callback

function calls can be started. The callback functions are reading as many samples as it

takes to fill a device stream buffer.

With every execution of the processing thread the cyclic buffers are refilled if necessary.

To synchronise the read and write mechanism, the callback functions and the processing

routine keep track of their current position within the cyclic buffer. Whenever the

processing routine’s position is “behind” the callback’s position the cyclic buffer has to

be refilled. (Fig. 31)

Figure 31: Memory access synchronisation

Device 1

Device n

Callback
Function 1

Device 1 Buffer
Device 1 stream

.

.

.

Cyclic
Buffer 1

Cyclic
Buffer n

Channel 1 Data

Channel n Data

Processing
Routine

Source 1

Buffer 1

Read Position

Write Position

Channel 1 Data

Write Position

Channel n Data

Callback
Function n

Device n Buffer
Device n stream

.

.

.

.

.

.

Read Position

70

Callback in detail :

FOR frames_per_Buffer

 FOR samples_per_frame

 read CHANNEL_BUFFER at read_position

 ENDFOR

ENDFOR

read_position = read_position + frames_per_buffer

IF read_position >= cyclic buffer size

 read_position = cyclic buffer start

ENDIF

Process routine in detail :

WHILE 3-D processing not stopped

 IF (FOREACH device write_position <= read_position)

 FOREACH SOURCE_OBJECT

 IF enough samples left to read in SOURCE_OBJECT.binary_data to fill \

 device buffer

 FOREACH device

 FOREACH device.channel

 IF device.channel is active

 call reproduction function to work up size of device buffer \

 samples

 ELSEIF

 fill up device buffer with ‘0’

 ENDIF

 ENDFOREACH

 device.channel.read_position=read_position +

 frames_per_buffer

 IF device.read_position >=cyclic buffer size

 device.read_position = cyclic buffer start

 ENDIF

 ENDFOREACH

 ELSEIF //not enough sample left in buffer

71

 FOREACH device

 FOREACH device.channel

 IF device.channel is active

 call reproduction function to work up sample left in buffer

 ELSEIF

 write ‘0’ to device buffer as often as samples left in buffer

 ENDIF

 ENDFOREACH

 device.channel.read_position=read_position +

 written samples

 IF device.read_position >=cyclic buffer size

 device.read_position = cyclic buffer start

 ENDIF

 IF SOURCE_OBJECT to loop repetitive

 SOURCE_OBJECT.buffer_read_position= start of \

 corresponding BUFFER_OBJECT.binary data

 FOREACH device.channel

 IF device.channel is active

 call reproduction function to work up samples needed \

 to fill up device buffer

 ELSEIF

 write ‘0’ to device buffer as often as samples needed \

 to fill up device buffer

 ENDIF

 ENDFOREACH

 device.channel.read_position= read_position +

 needed samples to up device buffer

 IF device.read_position >= cyclic buffer size

 device.read_position = cyclic buffer start

 ENDIF

72

 ELSEIF // no loop

 FOREACH device.channel

 write ‘0’ to device buffer as often as samples needed to

 fill up device buffer

 device.channel.read_position= read_position +needed

 samples to up device buffer

 IF device.read_position >= cyclic buffer size

 device.read_position = cyclic buffer start

 ENDFOREACH

 ENDIF

 ENDFOREACH

 ENDIF

 ENDFOREACH

 ENDIF

ENDWHILE

Reproduction function in detail :

The reproduction function being called within the process routine is reading a given

length of a given source object’s buffer into a temporary buffer.

Effects defined for the source object are applied to the temporary buffer.

Having all effects applied, the algorithm for sound spatialisation, dependent on the

chosen reproduction technique, is used on the temporary buffer.

The resulting buffer is then written to the device stream.

create tempbuffer with length of device.buffer size

FOR device.buffer size

 read sample from SOURE_OBJECT.binary_data to tempbuffer

ENFOR

IF effects defined for SOURCE_OBJECT

 FOREACH SOURCE_OBJECT.effect

 apply effect algorithm to tempbuffer

 ENDFOREACH

ENDIF

73

IF SOURCE_OBJECT is to be positioned

 apply specified spatialisation algorithm to tempbuffer

ENDIF

write tempbuffer to device buffer

Sound effects in detail :

With the kernel implementation of the Portaudio 3-D Extension no sound effects are

supported. Functions and control structures necessary to implement sound effects are

integrated within the audio reproduction process nevertheless.

Thus broadening the reproduction with sound effects step by step is possible.

Implementing sound effects like distance attenuation, doppler shift, diffraction or

reverberation contribute to the impression’s reality.

Spatialisation algorithm in detail :

For the chosen audio reproduction set-up an algorithm for reproduction using a

loudspeaker array must be chosen.

For improved performance the Ambisonics reproduction technique has been

selected.49

Using amplitude panning techniques a sound signal is applied to all loudspeakers placed

evenly around the listener.

The loudspeakers gain factor is evaluated using the total number of speakers and the

angle between the loudspeakers and the virtual sound position.

 gi : gain of loudspeaker I

 N : total number of loudspeakers

 α : angle between virtual sound source signal and loudspeaker

The reproduction can be approved using second order Ambisonics.

49 cp.: Section 2.2.2

gi = 1
N

(1 + 2cosαi)

gi = 1
N

(1 + 2cosαi + 1 + 2cos2αi)

74

The sound is still applied to all of the loudspeakers but the gains have prominently

lower absolute values on the opposite side of a panning direction. Thus fewer artefacts

appear. 50

The Ambisonics reproduction technique leads to the spatialisation algorithm used

within the Portaudio 3-D Extension.

The loudspeaker amount as well as their positions are given within the environment

property of the sound system object. For sound sources the position is given in their

properties allowing the determination of the needed operands and the gain to be

applied.

6.8. Moving objects

Within the virtual world the listener object and the source objects can be replaced using

the offered service routines for translation and rotation.

Within the Portaudio 3-D Extension a listener oriented Cartesian coordinate system is

assumed. Thus the listener position always stays origin of the world.

Translating or rotating a source is done corresponding to translation and rotation

algorithms used in computer graphics.

Listener translations or rotations have to be performed in a different way.

Since a listener oriented coordinate system is used, translating or rotating the listener is

implemented as a transformation of the coordinate system.

Not the listener is changing with a transformation being applied every source within the

virtual world is changing it’s position when a transformation is applied to the listener

object.

50 cp. : Pulkki, Ville, Spatial Sound Generation and Perception by Amplitude Panning Techniques,

 Helsinki, Laboratory of Acoustics an Audio Signal Processing - Helsinki University of Technology,

 Espoo 2001, Report 62, 2001, pp.14-15

75

7. Application Test

For proving the workability and the rightness of the API’s kernel approach a demo

virtual reality application is developed including real – time 3-D sound.

To prove the API’s functionality a sound source and the listener object are included

within the application.

For audio play back purposes the audio reproduction set-up at the Fachhochschule

Wedel is used.

Although the installed distributed virtual reality system at the virtual reality laboratory

benefits a demonstration of a distributed approach, the the demo application is

developed using the composed integrated virtual reality system. Using an integrated

system, the API’s workability in high stress situations is proven.

7.1. Virtual Reality Application Implementation

To demonstrate PortAudio 3-D Extension’s functionality a simple OpenGL based

virtual reality application is developed. The application is implementing a sphere placed

on a plane within the virtual world.

The camera is representing the user’s view.

The application user is free to move within the virtual world. Translation as well as

rotation in every direction is possible. With listener movement every possible relative

position between the sphere and the listener is produceable.51

For 3-D sound inclusion, the sphere is to be interpreted as an object emitting omni

directional sound. The camera representing the user is to be taken as the listener’s

representation as well it is already representing the user’s visual aspects.

Using the PortAudio 3-D Extension, the sound inclusion is done in four steps as

mentioned.52

51 cp.: Todt, Severin S., PortAudio 3-D Extension Demoprogramm Dokumentation, VR4 Lab, Wedel,

 2002

52 cp.: Section 6.5

76

The first three steps are executed within the initialisation phase of the virtual reality

application.

 1. Initialising the PortAudio 3-D Extension library

 2. Creating sound sources to be reproduced and the corresponding buffers

 3. Starting 3-D Sound processing

Moving the listener is done within OpenGL’s callback function through user input

application.

The graphical transformations are taken over for listener transformation resulting in

corresponding situations within the virtual graphical as well as in the virtual audible

world.

When terminating the graphical output the 3-D sound is stopped also.

 4. Stopping 3-D Sound processing

For successful compilation the “pa_rd.h” header file has to be included and the libraries

needed by PortAudio to realise the operating system dependent tasks has to be linked.

7.2. Evaluation of Integratability

Within 3-D sound integration the application developer is freed of any knowledge about

digital audio processing, neither he has to care about audio file input or output. Writing

an virtual reality application including 3-D sound is comfortable and easy.

Although only four steps have to be performed and the developer is freed of a lot of

background knowledge he still has to take into account the synchronisation mechanisms

used within the Portaudio 3-D Extension.

The first two steps of 3-D sound integration are uncritical. They can be performed

practically anywhere in the virtual reality application.

Starting the 3-D sound processing and starting and the virtual reality application

processing has to be done in separate threads using higher priority for the audio

processing thread to avoid interruption or audible artefacts during playback.

Knowledge of multithreaded programming is therefore essential.

77

Since the API’s specification module could not be finished within this thesis, the work

to be done in advance to enable an ease of use is uncomfortable and lengthy.

Although the specification module is already prepared, encapsulating the relevant

information in two header and source files, the developer still has to edit these files in

order to adjust the specification to his audio reproduction set-up.

Choosing virtual reality applications other than these based on OpenGL might be an

easier idea for interpreting 3-D sound at the moment.

Since OpenGL is working on a stack based transformation system, the applied graphical

transformations can not be transferred as they are.

Applying a rotation followed by a translation in OpenGL in the same order using the

PortAudio 3-D Extension API would result in different situations.

Within OpenGL the rotation is performed based on the position resulting from the

translation.

The PortAudio 3-D Extension API does not work on a transformation stack instead

applying the transformation directly.

Thus the final position is evaluated as the translation of the coordinates that result from

the rotation.

The transformations must therefore be performed in opposite order which is easy for

small OpenGL application but can be become impossible for mighty ones.

7.3. Evaluation of Application Execution

The demo application showed that the integration of real – time 3-D sound integration

is possible even on an integrated virtual reality system approach.

The workability of the PortAudio 3-D extension API is proven with the demo

application.

It could be shown that sound reproduction corresponding to a visual counterpart within

the virtual reality application can be performed without noticeable delay in real - time.

The reproduction is possible for objects placed anywhere in 3-D space.

78

It could further be proven that the routines for translating and rotating objects are

resulting in changes corresponding to the common understanding of the functionality.

Performance investigation is done comparing the frame rate reachable by the OpenGL

application with and without 3-D sound integration.

Integrating PortAudio 3-D Extension API calls, the frame rate lowers from

approximately 30 Frames per second to a rate as low eight frames per second for the

demo application running on the installed hardware set-up.

The virtual reality application’s performance is decreasing with 3-D sound integration

but no artefacts were recognisable on the 3-D sound application part during audio play

back. The Portaudio 3-D Extension API’s influence on CPU power distribution can be

adjusted through change of the thread priority the 3-D sound functions are started and

operated in.

Downgrading the thread’s priority is not desirable since an interruption of the 3-D

sound processing would result in audible artefacts.

8. Conclusion and Future Work

8.1. Summary

A real – time 3-D sound API kernel was developed and tested based on a standard

hardware platform and a loudspeaker array for audio reproduction.

The development and testing was performed in the virtual reality laboratory at the

Fachhochschule Wedel .

An overview over related research projects (e.g. Virtual reality Sound at the University

of Aizu, Cyber Stage at GMD, NAVE at Georgia Tech) was presented. Based on those

the idea for the 3-D sound system was developed, exposing their restrictions and

features.

The background of human sound perception was introduced and techniques for spatial

sound reproduction were presented and evaluated. Methods for 3-D sound integration

in available virtual reality systems were shown and discussed.

79

For the software engineering process minimum requirements on a real – time 3-D

sound API were composed and existing 3-D sound APIs were checked against these,

ratifying the need of a new real – time 3-D sound API development.

A stand alone virtual reality system housing the virtual reality application and the real –

time 3-D sound application were set up based on standard hardware components and a

loudspeaker array for play back.

The kernel functionality of a real –time 3-D sound reproduction system was engineered

based on a extensive analysis of the natural sound system.

The reproduction using a loudspeaker array of eight loudspeakers and Ambisonics for

sound spatialisation, positioning of sound sources and listener movement are forming

the kernel functionality.

The API was tested using an OpenGL application supplemented with real – time 3-D

sound functionality.

8.2. Future Work

The developed real – time 3-D sound API will be developed further in a subsequent

project.

Specifications module will be enlarged and an application for specifying user dependent

configurations for audio processing and the available hardware set-up will be developed

to ease the API’s use.

An additional module realising the integration within a distributed virtual reality system

will be developed. The real – time 3-D sound functionality will then be implemented

using client and server stubs. The system used for audio playback in this thesis will be

available over ethernet within the virtual reality laboratory as 3-D sound server.

For easier integration in virtual reality application the transformation mechanisms for

translating or rotating objects will be adapted to the use of a transformation stack as

performed in OpenGL.

Further audio reproduction techniques for loudspeaker arrays as well as for headphone

reproduction will be supported for a wider field of use.

80

Sound effects, not implemented yet, will be developed to increase the grade of presence

and reality of the 3-D sound reproduction. Effects like Doppler Shift, distance

attenuation or reverberation will improve the natural impression.

Continuously the source code will be optimised for increase of performance.

81

References

Begault, Durand R. : 3-D sound For Virtual Reality And Multimedia, Moffet Field,
 NASA Ames Research Center, Academics Press Professional, 1994, Reprint 2000

Begault, Durand R. : Auditory And Non-Auditory Factors That Potentially Influence
 Virtual Acoustic Imagery, Moffet Field, Human Factors and Technology Devision -
 NASA Amees Research Center, 1999

Begault, Durand R. : Head-Up Auditory Displays for Traffic Collision Avoidance
 System Advisories, Moffet Field, NASA Ames Research Center, The Human
 Factors and Ergonomics Society Inc., 1993

Begault, Durand R. : Preferred Sound Intensity Increase For Sensation Of Half
 Distance, Moffet Field, AES 93rd Convention San Francisco, 1992

Begault, Durand R., Wenzel, Elisabeth M.: Headphone Localization of Speech, Moffet
 Field, NASA Ames Research Center, Human Factors, 1993

Davis, Elisabeth T. a.o. : Can Audio Enhance Visual Perception and Performance in a
 Virtual Environment, Atlanta, Georgia Institute of Technology, 1999

Dickreiter, Michael: Handbuch der Tonstudiotechnik, München, Saur, K.G, 1997

Faust, Simon: 3-D Akustik mit Lautsprechern, Aachen, RWTH Aachen Virtual Reality
 and 3D Visualization, 2000

Gardner, William G.: 3-D Audio Using Loudspeakers, Boston, Massachusetts Institute
 of Technology, Kluwer Academic Publishers, Norwell, Massachusetts, 1998

Groening, Matt : The Call of the Simpsons, Twentieth Century Fox, 1990

Hennig, Alexander, Die andere Wirklichkeit, München, Addison Wesley, 1996

Herder, Jens : A Sound Spatialisation Resource Management Framework, Aizu, The
 University of Aizu - Spatial Media Group, 1999

IASIG, IASIG Interactive 3D Audio (Level 1) Requirements, 1998

Jot, Jean-Marc, Synthesising Three-Dimensional Sound Scenes in Audio or Multimedia
 Production and Interactive Human – Computer Interfaces, Ircam - Centre Georges-
 Pompidou, 5th International Conference, Interface to Real & Virtual Worlds,
 Montpellier, 1996

Kendall, Gary : A 3-D sound Primer,
 http://www.northwestern.edu/musicschool/classes/3D/pages/
 3DsoundPrimer.html, 11.02.2002

82

Loki Software, OpenAL Specification and Reference, http://www.openal.org, 2000

Microsoft, MSDN Library – DirectX, http://www.microsoft.com/directx/,
 11.02.2002

Pulkki, Ville, Spatial Sound Generation and Perception by Amplitude Panning
 Techniques, Helsinki, Laboratory of Acoustics an Audio Signal Processing -
 Helsinki University of Technology, Espoo 2001, Report 62, 2001

Sun microsystems, The Java 3D API specification, http://java.sun.com/, 11.02.2002

Todt, Severin S., PortAudio 3-D Extension Demoprogramm Dokumentation, VR4 Lab,
 Wedel, 2002

Todt, Severin S., PortAudio 3-D Extension Dokumentation, VR4 Lab, Wedel, 2002

Tonnesen, Cindy; Steinmetz, Joe : 3-D sound Synthesis, Washington, The Encyclopedia
 of Virtual Environments,
 http://www.hitl.washington.edu/scivw/EVE/I.B.1.3DSoundSynthesis.html, 1993

http://wwwsv1.u-aizu.ac.jp/~mcohen/spatial-media/PSFC/welcome.html, 11.02.2002

http://www.gmd.de/, 11.02.2002

http://www.portaudio.com, 11.02.2002

83

Appendix A

CD Contents

The CD ROM included within this diploma thesis contains literature available in misc.

formats.

The literature contributed to the work as well as it can be used for future research

projects.

The diploma thesis and the referenced implementation documentation written by the

author are included within the “diploma_thesis_doc” directory.

Sourcefiles including the PortAudio API sources, PortAudio demo programs as well as

the PortAudio 3-D Extension can be found with in the “sources” directory.

The PortAudioExtension API can be found under

“sources/portaudio/pa_common/pa_3d“, the referred demo programm is placed in the

directory ”source/portaudio/pa_common/pa_3d”

84

CD ROM directory path

/literature (contains literature that contributed to the diploma thesis)

 /aachen

 /aes

 /aizu

 /ames

 /dolby

 /gerogia_tech

 /hut

 /iasig

 /icad

 /lake_products

 /mit_medialab

 /openal

 /princeton

/diploma_thesis_doc

/sources

 /portaudio

 /docs

 /download

 /pa_common

 /pa_3d

 /pa_mac

 /pa_tests

 /pa_unix_oss

 /pa_win_ds

 /pa_win_wmme

 /pablio

85

Eidesstatliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbständig und ohne

Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden

Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich

gemacht.

Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen

Prüfungskommission vorgelegt und auch nicht veröffentlicht.

Ort, Datum Unterschrift (Vor- und Nachname)

