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Abstract 

In medical volume visualization, one of the main goals is to reveal clinically relevant details from the CT study by 

classification of the data, i.e. the coronary arteries, without obscuring them with less significant parts. Usually, 

the classification is carried out by defining multi-dimensional transfer functions which assign specific visual at-

tributes to the voxels which express the features of interest. Unfortunately, this can become a fairly complex task, 

generally accomplished by trial and error even for the experienced user. Many sophisticated semi-automatic and 

automatic approaches for volume classification have been published in the past, which rely either on the overall 

quality of the rendered image or on a general boundary detection between different materials rather than on an 

insight as to what makes the transfer function appropriate for a specific feature in the dataset. This paper pre-

sents an efficient way for automatic transfer function generation based on neural networks. We describe how to 

use neural networks to detect distinctive features of the volume data and how this information can be used to pro-

vide the user with a semantic view on the automatic data classification.  

   

1. Introduction 

Direct volume rendering is a powerful technique for visu-
alization of CT data as it has the potential to show the three 

dimensional structure of a feature of interest, rather than 
just a small part of the data by a cutting plane. It helps the 
viewer to get a better insight into the relative 3D positions 
of the object components and makes it easier to detect and 
understand complex phenomena like coronary stenosis for 
diagnostic and operation planning. The latest advances in 
consumer graphic cards has made this approach even more 
attractive, as high quality interactive volume rendering is 

now possible on common low cost hardware.  

However, in clinical practice, volume rendering is sel-
dom used. This is due to the fact that a proper classification 
of the data, which is mandatory to extract the features of 
interest while suppressing insignificant parts, can become a 
fairly complex task. CT scans contain a combination of 
different materials and tissue types with overlapping 
boundaries. Depending on the actual diagnostic target, 
some of those features of the dataset must be highlighted, 

some must be shown transparent to retain the anatomical 
context while others should become completely invisible to 
prevent obscuring the more important parts. Without such a 
proper classification, it is impossible to obtain a successful 

visualization which helps the user to gain a good insight 
into the dataset. Furthermore, the user should be able to 
change the classification interactively according to his/her 

needs. This should be possible in a semantic way, where 
concrete features of interest can be selected directly by 
their name instead of working with a non-intuitive data 
driven approach. 

For volume classification, transfer functions are typically 
used. Their role is basically to assign specific visual attrib-
utes like color and opacity to the features of interest. The 
simplest approach is to use a one-dimensional transfer 

function, where the voxel data is the only variable to which 
these visual attributes are assigned. But this method fails in 
most cases to omit interference of other anatomical struc-
tures, since these may contain the same range of scalar 
values making it impossible to differentiate between them.  

Two-dimensional transfer functions solve this problem 
by adding an additional dimension to the transfer function 
domain. By using a classification based on a combination 
of properties, different features can then be visualized 

separately from each other. Therefore two-dimensional 
transfer functions are of great importance for the classifica-
tion process of medical data. 
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Figure 1: (a) above: Volume rendering of a cardiac CT 
scan classified with a 2D transfer function. (b) below: 2D 
histogram based on attenuation coefficient and gradient 
with filters. 

Unfortunately, specifying two-dimensional transfer func-
tions can become a fairly complex and time-consuming 
task even for experienced users like visualization experts. 

First, the user must handle additional parameters for the 
second dimension, thus making the editing process more 
difficult. Second, the user must set the transfer function in 
the rather abstract data analysis domain while observing 
the result in the rendered image (visualization domain). An 
example of a volume rendering of a cardiac CT scan classi-
fied with a 2D transfer function is shown in Figure 1. The 
situation is made worse by the fact that small changes to 
these parameters tend sometimes to cause large and unpre-

dictable changes to the visualization. Thus, to avoid editing 
based completely on trial and error, it is necessary to iden-
tify features of interest in the data analysis domain first, 
requiring a good understanding of the data values and their 
relevance for a certain feature. Additionally, the manual 
assignment of optical properties might be non-standardized 
but rather influenced by the personal taste of the user. This 
can cause misinterpretation of the data if the visualization 

is later on reviewed by others. Also, this often leads to 
results which are hardly reproducible and hence not suit-
able for clinical practice. Finally, radiologists have a lim-
ited time allowed for diagnostics per patient, which makes 
two-dimensional transfer functions impractical to use 
without proper guidance through the process or a semi-
automatic transfer function generation. 

Besides manual transfer function creation, semi-
automatic and automatic methods have been proposed in 
the past as we will discuss below in more detail. These can 
be categorized into two kinds of approaches: (1) Image-
driven methods focus on the overall quality of the rendered 
image and rely often on user interaction to decide which 
transfer function setup is the most appropriate of a given, 

pre-generated set. (2) Data-driven approaches try to detect 
certain features and their boundaries automatically by 
analyzing the volume data with different algorithmic meth-
ods. However, both approaches have in common that they 
are not purposive enough when a specific feature of the 
dataset should be visualized, as it is required for clinical 
routine. 

In our work we present a new approach for two-
dimensional transfer function generation based on neural 

networks. We describe how to train neural networks to 
detect distinctive features of the volume data and how this 
information can be used to provide the user a semantic 
view on a semi-automatic data classification. Because 
histograms of same scan type (e.g. cardiac scans) have 
similar structures, neural networks can be trained to posi-
tion filters on features of interest according to the diagnos-
tic target. Although this technique is flexible enough for 

classification of different types of CT datasets, in this paper 
we focus on heart scan visualization to detect coronary 
diseases.  

2. Related Work 

Different approaches for semi-automatic or automatic 
transfer function generation have been proposed recently. 
He et al. [HHKP96] describe a method based on stochastic 
search techniques, where the user selects transfer functions 

from thumbnail images. For each selection after the first 
one, which is either generated randomly or given as a 
preset, a heuristic search is performed until the selection 
converges with the search results. Another interactive 
approach is presented by Marks et al. [MAB*97], which 
uses an interactive user interface called Design Gallery for 
setting the visual attributes. The gallery consists of differ-
ent renderings created by a broad variation of the transfer 

functions parameters. From this selection the user can 
choose the one with the best visual appearance. Both tech-
niques rely on the quality of the rendered image rather than 
on an insight as to what makes the transfer function appro-
priate for a specific dataset. Also, both approaches support 
only one-dimensional transfer functions, while multi-
dimensional approaches have proven superior for effective 
classification.  

Therefore,  Kindlmann et al. [KD98] use the first and 

second derivative of the data value to create a three dimen-
sional volumetric histogram for a mathematical analysis to 
perform an automatic boundary detection. But this ap-
proach is less feasible for clinical practice, since no infor-
mation about the features of interest is used to generate the 
transfer functions. Salama et al. [SKK06] also proposed a 
technique which introduces a semantic model to the trans-
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fer function setup. In this case, the authors use principal 
component analysis to decide which parameters of a trans-
fer function show the biggest variance between different 
datasets of the same type. The first principal component is 
then used to adjust the transfer function to its individual 
dataset, while additional properties (like color, visibility) 
can be changed to increase the overall visual quality. To 

create a semantic view, the principal component analysis is 
performed for every feature of interest. This information is 
then incorporated in a user interface, grouping the different 
parameters regarding to the features name. In our approach, 
we borrow the idea of semantic categorization of transfer 
functions, while replacing the manual adjustment of pa-
rameters with an automatic approach for transfer function 
generation. 

Hence, closer to the method presented in the current pa-

per is the technique described by Tzeng et al. [TLM03]. 
The system described in their paper generates high-
dimensional transfer functions interactively as the user 
selects relevant and irrelevant parts by “painting” on a set 
of slices from the volume dataset. A neuronal network uses 
the painted regions as training data to learn which voxels 
have characteristics that might be of interest. Based on this 
information, opacity functions are created to classify the 

whole dataset. As input, this approach uses the voxel’s 
value, gradient, values of its neighbours and its location. 
While this method focuses on evaluating the properties of 
each voxel in one dataset, the importance of the current 
paper is that while these values vary between different 
datasets, the two-dimensional histogram contains structures 
that can be still used to identify features of interest by 
neural networks. 

3. State-of-the-Art 

3.1. Volume Rendering 

A lot of progress has been made in the development of 
consumer graphics hardware, which – mainly designed for 
computer video games – also makes it possible to acceler-
ate volume rendering to achieve interactive frame rates. 
Among the different approaches for direct volume render-
ing including ray-casting, the shear-warp algorithm and 

texture based methods, the latter one has proved superior 
for CT data visualizing. It combines high quality images 
and most efficient use of hardware acceleration techniques 
[EHKR06a]. These approaches take advantage of the 
graphic cards support of bilinear and trilinear interpolation, 
required for the resampling step during volume rendering.  

In the field of texture-based techniques, two methods exist. 
The 2D texture-based approach uses three copies of the 
volume data which reside in texture memory. Each copy 

consists of a fixed number of slices along a major axis of 
the dataset which will be addressed depending on the cur-
rent view direction. After bilinear interpolation, the values 
of the slices will then be classified through a lookup table, 
rendered as a planar polygon and blended into the image 
plane. This method often suffers from artefacts caused by 

the fixed number of slices and their static alignment along 
the major axes. Alternatively, hardware interpolation can 
be used to generate intermediate slices along the slice axis 
to achieve better visual quality. But this would, in addition 
to the redundant data storage, further increase the amount 
of required graphics memory. Modern graphic cards sup-
port 3D texture mapping which allows storing the whole 

dataset in one volumetric texture object. It is then possible 
to sample view-aligned slices using trilinear interpolation. 
Thereby the artefacts which occur when 2D texture-based 
techniques switch between the orthogonal slice stacks can 
be avoided and an arbitrary sample rate can be chosen, 
which results in an overall better image quality. Since the 
3D texture consists of a RGBA quadruplet for every texel, 
also in addition to the scalar value the pre-calculated gradi-
ents for multi-dimensional transfer functions can be stored 

without additional memory consumption.  

Therefore in our approach, 3D texture mapping is used. 
However, the method described in this paper is independ-
ent of the technique used for volume rendering, as both 2D 
and 3D methods use transfer functions to map scalar values 
to visual attributes. 

3.2. Classification 

Besides the visual quality achieved with the rendering 

process itself, the most important task for a successful 
visualization is to find a good classification technique that 
captures the features of interest while suppressing insig-
nificant parts. This step is typically accomplished by trans-
fer functions, which assign renderable optical properties 
like color and opacity to each voxel of the dataset. A 
straightforward approach to achieve this goal would be to 
use 1D transfer functions, which consider only the voxel’s 

scalar value to handle this task. For medical datasets, this 
approach is in most cases of limited effectiveness, because 
the materials and tissue types which are to be separated 
might have overlapping intervals of scalar values, making 
1D transfer functions unable to render them in isolation. 
When a visual attribute is assigned to such an interval, all 
corresponding voxels are equally visualized, regardless to 
which anatomical structure they belong. 

Multi-dimensional transfer functions classify the volume 
not just on the data values but on a combination of different 
properties. This additional information makes it then possi-
ble to differentiate between the features of the dataset. 
Kniss et al. presented a method for manual multi-
dimensional transfer function generation based on the data 
values and its derivatives [KKH02]. The gradient is useful 
as an additional criterion for classification since it dis-
criminates between homogenous regions inside a structure 

and regions of change at the boundaries. Also, the gradient 
can be used to apply illumination to the volume visualiza-
tion which improves depth perception. In the past, we 
demonstrated the importance of two-dimensional transfer 
functions which, in addition to the attenuation coefficient, 
also take the corresponding gradient magnitude into ac-
count for visualization of cardiac CT studies in combina-
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tion with PET. This approach performed well to show 
myocardial perfusion and location of stenosis of the coro-
nary arteries [FSW*07]. For this purpose, the software 
“VolumeStudio” was developed, capable of visualizing 
both modalities, PET and CT. 

The manual transfer function generation can be per-
formed in a visual editor, which illustrates the distribution 

of tuples of attenuation coefficient and gradient magnitude 
of the dataset in a logarithmic scaled joint histogram. The 
attenuation coefficient is shown on the x-axis, the gradient 
magnitude on the y-axis. An example is given in Figure 1. 

 

Figure 2: 2D joint histogram of attenuation coefficient 

versus gradient magnitude. Regions a) – e) identify differ-
ent materials. 

Different materials and boundaries can be identified in 
the histogram. Homogeneous regions appear as circular 
spots at the bottom, as their gradient magnitude is very 
low. Five basic regions are shown: a) air, b) soft tissue like 
fat and skin, c) muscles, d) blood (with contrast agent) and 
e) bones. Arches between these regions represent the 

boundaries of different materials, where the gradient mag-
nitude reaches its highest values. By using a two-
dimensional transfer function, which classifies the data 
based on attenuation coefficient and gradient magnitude as 
shown in the histogram, each of these features can be 
visualized separately from each other.  

To create such a transfer function, the user places filters 
inside the histogram, shown as rectangular areas. Each 

filter assigns color and opacity values to the voxels of the 
dataset which are represented by the tuples of attenuation 
coefficient and gradient in the histogram inside the defined 
area. The filter size and position can be changed, also its 
color and opacity distribution. Additionally, the shape of 
the filter kernel can be altered between different types like 
Gauss or sine. If multiple filters are set, their color and 
opacity values are blended together. The above editing can 
be done interactively in the data analysis domain, while the 

user can decide by observing the visualization in the visu-
alization domain if the current setup is appropriate or not. 
This feedback is especially useful for the initial exploration 
of the dataset to get an overview of which parts in the 
histogram correspond with the features to visualize. Kniss 
et al. also presented other kernel shapes for transfer func-
tion generation, our experience, however, has shown that 
the two described above are sufficient for the visualization 

of cardiac CT scans. 

Figure 1 shows a volume rendering of a cardiac CT scan 
and the transfer functions used. It consists of two gauss 

filters: The first one colored in yellow is located between 
the regions c) and d) (compare Figure 2) to visualize the 
myocardial muscle (heart muscle) and the coronaries (by 
contrast agent). The second one resides at the top of the 
first filter, enhancing the contrast between myocardium and 
coronaries by coloring the properties that represent the 
boundaries of the contrast agent in red. The coloring was 

chosen to get a high contrast between the myocardium and 
the coronaries. 

For an experienced user, the distinctive features of the 
distribution shown in the histogram provide useful infor-
mation about the features metrics, thereby guiding the 
transfer function generation. But even with these hints, this 
is a time-consuming iterative process. The user has to 
explore the dataset by defining filters and move them to 
possible interesting locations on the histogram. Once a 

feature of interest is identified, the parameters for the filter 
size, location, filter kernel shape opacity and color have to 
be optimized to match the user’s needs until all features of 
interest are made visible. 

3.3. Neural networks 

An artificial neural network is a software tool to estimate 
relationships in data and can be used for function approxi-
mation, classification, estimation, pattern recognition and 

simulation purposes. Unlike rule-based algorithms, neural 
networks learn by being repetitively trained with examples 
of the data to be differentiated. During a training phase, it 
gains knowledge about the relationship between data given 
as input and the desired output. After the training is com-
pleted, the neuronal network applies its knowledge to 
estimate the solution for problems of similar kind. More 
generally, it has the ability to generalize solutions about 

imprecise input data.  

The design used for neural networks has its roots in our 
understanding of the human central nervous system and its 
way of processing information. Therefore, it relies largely 
on parallel processing and weighting of information. Basi-
cally, a neural network consists of neurons which are 
grouped into different layers and are capable to process 
multiple inputs, to a single output (see Figure 3). The dif-

ferent layers are interconnected to each other where each 
input of a neuron in the current layer is connected to the 
outputs of the previous. Each connection has a weight 
which describes the relevance of the information across 
this connection, sometimes also referred to as synaptic 
strength. For each neuron, these weighted inputs are 
summed and then transformed via a nonlinear activation 
function to form the output. Training is performed by 
modifying the weights until the output matches the desired 

value for a given input. Hence, to train the network a so 
called training set of matching input and output values is 
required, which represents the relationship the neural net-
work should later be able to approximate. Starting with 
random weights, training is performed iteratively until the 
output error is minimized. Once training is completed, the 
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network can be used to process data beyond the training 
set. 

 

Figure 3: Neural cell - neuron 

For our approach, we use the feed-forward back-
propagation network architecture developed in the early 
seventies by Werbos and later redeveloped by Rummelhart 
and others [RHW86]. While advantageous as they are fast 

to execute, the major disadvantage of feed-forward back-
propagation networks is that no fast training algorithm has 
been developed down to the present day and therefore can 
be extremely slow to train. However, as training is per-
formed only once in most cases and because of its good 
performance as universal function approximator, it is the 
most common and widely used type of artificial neural 
networks for data classification and prediction. Therefore, 

we have isolated this specific network type as the neural 
network we have used for our approach. 

The topology of a feed-forward network usually consists 
of at least three layers in which the neurons are arranged. 
The first layer is the input layer, where each input of the 
data to be processed is assigned to one neuron. The output 
layer is the last layer of the neuronal network, which holds 
a number of neurons equally to the number of desired 

outputs. In between the input and the output layer resides 
one or more hidden layers, where each neurons input is 
connected to all outputs of the previous layer. Similarly 
every output is fully connected to the nodes of the next 
layer. All connections are made in a feed-forward fashion, 
hence there are no loops in the network and the information 
processed is only allowed to travel in one direction. 

The output  of each neuron is computed by 

, where i is the previous layer, j is the current 

layer,  is the activation function,  is the threshold (if 
implemented in network) and  is the weight. As no 

weight affects the input layer, we use therefore instead 

 were  denotes the input to the network.  

In order to train the neural network by example, training 
sets of known input-output data points must be assembled. 
Training itself is then performed by the back-propagation 
algorithm, which adjusts the weight of the connections in 
the network to minimize square error between actual output 
and desired output. For a previously untrained network, 
first all weights are set at random. Then the algorithm 

propagates the input of the training set through the network 
and compares the actual output of with the desired output 
of the training set. The difference is called output error and 
is calculated for each output in the output layer as error 

delta , where  is first deriva-

tive of the activation function in that output neuron for the 
point of its output. The need to calculate derivatives in the 
process of back-propagation explains the typical choice of 

the activation function as  

logistic ( ) or hyperbolic tangent ( ).  

The main reason is that derivatives of these functions can 
be calculated using the value of the function. For logistic 
function shown in Figure 4, which was used in our neural 
network, equality holds: . Activation 

functions have to be differentiable in order to apply back-
propagation. 

 

 

Figure 4: Logistic activation function 

After the error deltas in the output layer are computed, 
we can update weights leading into it, using the following 

rule: , where  is the learning rate 

(small value, usually between 0.05 and 0.3),  is the error 

delta of the neuron weight is leading into and  denotes 

the output of the neuron weight is coming from (output 
produced in the feed-forward process). This rule is subse-
quently used for all weights. Weights can be updated indi-
vidually (called on-line learning) or in groups (called batch 
learning). In batch learning, we calculate weight deltas for 
all samples, and then combine them in one single update. 
Batch update is usually better, as it lowers oscillations of 

the weights. 

For all layers except output, error deltas are calculated 

using rule: , where i is current layer, 

j is next layer. We proceed backwards to the first layer 
calculating error deltas and updating weights. When the 

weights between 1st and 2nd layer are updated, back-
propagation is finished. This process is repeated many 
epochs until satisfactory results are obtained. Training can 
stop when the mean square error (MSE) obtained is less 
than a certain limit, or we have reached some pre-set 
maximum number of training epochs. 

During the training process over-training of the network 
should be avoided, as it lowers predictive abilities of the 

network. Over-training might occur if the network is 
trained on a training set that contains very similar datasets 
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or when the lower mean square error limit is not set prop-
erly. In this cases, the networks starts to focus its evalua-
tion on irrelevant details of the training set, loosing its 
generalization ability. For example, a network for voice 
recognition can be over-trained with a training set consist-
ing of sound samples spoken by only a few people. If the 
network is presented by a person with a different tone of 

voice or accent, it can perform poorly because it rather 
identifies the speaker than the sound. If this problem does 
occur, a lower mean square error limit should be set and a 
more varying training set should be used. 

To test the neural network performance, it is usually 
tested against a validation set which is not part of the train-
ing set. As the network is unfamiliar with this data, it can 
be seen as a representative of the general case. Therefore, if 
the validation succeeds, it can be expected to perform well 

in all other cases, too. However, if validation fails and 
considering the training set is properly chosen, the net-
works topology like the size and number of the hidden 
layers should be changed in order to achieve better results. 

4. Semi-automatic classification with neural networks 

As stated in Section 3, the 2D histogram showing the dis-
tribution of tuples of attenuation coefficient and gradient 
magnitude of a heart dataset contains distinctive features 

which can be used to guide the transfer function setup. 
These features consist of circular spots at the bottom of the 
histogram representing homogeneous materials and arches 
which define material boundaries. Hence, the position and 
size of a filter setup for a 2D transfer function depends on 
those patterns. Given as an input, the histogram can be 
used to train a neural network for pattern recognition. 
Therefore the user creates filter setups for a training set 

manually according to the diagnostic target. The network is 
then trained to associate outputs (filters) with input patterns 
in the histogram. This time consuming step has only to be 
performed once and can be done outside clinical practice 
by a visualization expert in cooperation with a radiologist 
to ensure the quality of the classification. Once the network 
is properly trained, it can be used to create an appropriate 
filter setup automatically. 

The 2D histogram is basically a greyscale image with an 
initial resolution of 256*256. Without further pre-
processing, an input of this size would require a significant 
amount of memory for storage of the neural network 
(16MB just for weights in case of 64 neurons in 2nd layer). 
Also, training of a network of this size would be slow, and 
its generalization abilities would be presumably low. 

Therefore, as a pre-processing step, the input to the neu-
ral network must be reduced to data that is relevant for the 

pattern recognition. First, we removed those parts of the 
histogram that contain no data at all. Since the size of the 
used part in the histogram varies from dataset to dataset, 
we estimated a maximum size based on the training set and 
use this as a fixed value for all datasets of the same type. 
For the cardiac CT scans used to evaluate our approach it is 
sufficient to remove the upper half of the histogram and 

only take the lower one into account. Second, we down-
scaled the remaining histogram averaging by a factor of 4 
as shown in Figure 5. This reduces the number of inputs to 
the neural network to just 2048. Furthermore, the down-
scaling of the image smoothes out parts of the histogram 
which lie outside the distinctive features required for pat-
tern recognition. Since these parts consists of tuples of 

attenuation coefficient and gradient magnitude which have 
only a few voxels of the dataset assigned to them, they 
appear to the neural network as noise. Also, these parts 
vary a lot between different datasets. As this affects the 
learning rate, with noise removed and image size reduced, 
the neural network will learn more easily and will have 
better generalization abilities. 

 

Figure 5: Original and reduced histogram 

For visualization of the myocardium and coronaries, two 
Gauss filters are required for proper classification. Each 
filter consists of four varying parameters, its width, height 
and its x, y location. As these form the output of the net-
work, its dimensionality is 2 x 4 = 8. Additional informa-

tion set during the training process, like the color of the 
filters and its kernel type, is stored separately from the 
network, as these parameters don’t change between differ-
ent datasets of the same type. 

Regarding the size of the hidden layer, we initially 
started with 64 neurons and then reduced the size step by 
step to 16. As we noticed no degradation in results, we kept 
this size for the hidden layer as it increased both learning 

and execution speed.  

The approach described in this paper has been evaluated 
using real patient cardiac CT data sets recorded by a 16-
slice-CT Siemens Somatom Sensation spiral scanner. The 
slice resolution was set to 256x256 with a varying number 
of slices to match the patient’s cardiac region. To test our 
approach, we manually determined positions of filters for 
the heart and coronaries on 14 samples. Four of the sam-
ples were randomly marked as testing sets, the other 10 

were used for training. We created 5 neural networks and 
trained the first one with 2 samples, the second one with 4 
samples and the fifth one with 10 samples. On all of these 
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networks we used the testing set to compute the mean 
square error as shown on Figure 6.  

For the network trained with 6 samples, the mean square 
error is lower on the testing set, than on the training set. 
More precisely, the training mean square error increases by 
0.00075 between the networks trained with 4 and with 6 
samples. After that, with further increased number of train-

ing samples, the MSE gradually decreases again. We as-
sume that this is caused by the 5th sample training data, 
which histogram is substantial different from the others, so 
the network could not easily minimize the errors that its 
oddity produces. As the number of samples increase, rela-
tive influence of that sample is reduced and MSE is low-
ered again. 

The result of our tests demonstrates that even small num-
ber of training samples produce good results for automatic 

transfer function generation. In our measurements, net-
works trained on 8 and 10 samples provide nearly the same 
low mean square error as network trained with just 6 sam-
ples. This is due to the fact that we used a network with a 
small hidden layer that leads to fast learning capabilities 
and the histograms have a very typical pattern structure, so 
just 6 training samples suffice for good recognition results. 
Rather, additional knowledge gained to the network by 

additional training might be annihilated by over-training. 
Hence training the network beyond this point achieves very 
little effect and should be avoided. 

 

Figure 6: Mean square error 

5. Semantic User Interface 

User interfaces for manual transfer function generation are 
often based on a data-driven approach, where the user has 
to manipulate filters represented by simple shapes directly 
in the histogram to create the desired classification. During 
the exploration of the dataset, the classification has to be 
adopted to match the structures of interest shown by the 

visualization with the actual diagnostic target. This in-
cludes increasing or decreasing the visibility of a certain 
structure to make occluded features visible while retaining 
the anatomical context or highlighting parts to make them 
easier to distinguish from others. All these steps rely either 
on a fine-tuning of the transfer functions or even make it 

necessary to start the editing process out from scratch, 
which is very time-consuming and unintuitive for the end-
user. 

As the neural network is able to detect patterns in the his-
togram that are assigned to concrete features for the trained 
dataset, we are able to introduce a semantic level where 
this changes can be made by the name of the features in-

stead of working with a non-intuitive data driven approach. 
Therefore, after determining all relevant features of the 
data in the training set and creating appropriate filters for 
each of them, we group the filters by the features name. 
Equally, the corresponding outputs of the neural network 
that calculate the parameters for those filters after the 
training phase are grouped together. 

After the training phase, the result of the classification 
performed by the neural network is presented in a hierar-

chical view, from where the user can modify the visual 
properties of the different filter groups (see Figure 7). This 
includes the feature’s opacity, color and its relevance as a 
focus or non-focus object. The relevance parameter affects 
color and opacity values for all filter groups based on a set 
of templates to optimize the visualization to match a certain 
diagnostic target. For example, to gain a better view on the 
coronaries of a cardiac CT dataset, lungs and bones are 

made invisible and the saturation and opacity of the myo-
cardium is reduced to gain a better contrast while retaining 
the anatomical context. The visualization can therefore 
easily be adapted to the user’s needs without knowledge on 
transfer-functions or data classification techniques. 

 

Figure 7: User Interface for a classification of a cardiac 
CT scan.  

6. Conclusion and outlook 

This paper presents an approach for automatic two-
dimensional transfer function generation that incorporates a 
semantic view to show different features of interest regard-
ing the diagnostic target. The classification itself is per-

formed automatically based on neural networks trained to 
detect patterns in the two-dimensional histogram of the 
data. The result is presented on an intuitive user interface 
that allows the user to change the visualized features by 
selecting them by name from a hierarchical semantic view. 
Also, the user can easily switch between focus and non-
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focus features to retain the anatomical context or change 
the visual attributes used for visualization. This can be 
done without any knowledge on transfer-functions or data 
classification techniques. Thus, the time spent on transfer 
function creation has been cut down from 1-3 minutes 
needed even by experienced users to approximately 5-20 
seconds for setting the desired features from the semantic 
view after automatic filter generation, giving doctors more 

time to analyze the data. Also, as this feature reduces the 
need for an in-depth understanding of the data analysis 
domain, it allows a wider range of doctors as end-users to 
medical software to experiment with patient’s 3D data.  

As future work, we would like to perform a deeper analy-
sis how modular neuronal networks would even increase 
the overall classification performance. In contrast to fully 
connected networks, modular networks consist of fully 

connected groups of neurons that compute their result 
independent of the others. This further enhances the net-
works ability for generalization.  
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Figure 8: Two cardiac CT datasets of the testing set. The 2D histograms below show the position of the transfer functions 

filters after classification with the neural network. 


