University of Siegen
Department of Electrical Engineering and Computer Science

Computer Vision Group

Master’s Thesis

Training of Lipschitz Continuous

Deep Neural Networks

Hendrik Sommerhoff

Matriculation Number: 1020300

May 4, 2019

Advisors:
Prof. Dr. Michael Moller
M. Sc. Jonas Geiping

Abstract

Recent research works have proposed to use generic image denoising neural networks
as plug-and-play regularizers for solving inverse image reconstruction problems. Even
though this achieves state of the art results for many tasks, it is hard to prove the
convergence of such algorithms. This thesis develops a provably convergent algorithmic
scheme that uses a non-expansive denoising neural network as a regularizer that is trained
by enforcing Lipschitz continuity with constant 1. To achieve this, different methods
from recent related work for calculating an upper bound for the best Lipschitz constant
of a neural network are applied to DnCNN, a common network architecture for denoising,
and to a Fourier transform based architecture which makes these calculations easier
and more efficient. Using these upper bounds, the network can be normalized during
training time, resulting in a provably non-expansive neural network. Furthermore, a
inherently non-expansive network based on wavelet denoising, which does not need any
further normalization, is developed. Even though the denoising performance of the
normalized networks is lower than their unnormalized counterparts, using them as plug-
and-play regularizers for solving a gaussian deblurring reconstruction problem shows

faster convergence speed and higher stability for some choices of hyperparameters.

Contents

[l_Introduction|

5 Mail 3 Foundations

[3 Image Reconstruction Problems|

[3.1 Energy Minimization Methods| . . .

[3.2 Learning-based Approaches|

B3 Hybrid Methods . . « « o o o oo e e

4 Training of Lipschitz Continuous Networks|

4.1 Recalling Neural Networks|

{4.2 Lipschitz Continuity of DnCNN| . .

[4.3 Layer-wise Lipschitz Constant Computation|

4.4 Lipschitz Normalization|

[4.5 Inherently Non-Expansive Networks|

(5 Numerical Experiments|

(5.2 Image Reconstruction|.

6 Conclusions|

111

12
12
16
17

20
20
28
29
35
39

44
44
49

56

List of Figures

4.3 Proot that DnCNN is expansive]
4.4 Example of of a wavelet pyranmuad|
(4.5 Hard thresholding with A\=1
4.6 Soft thresholding waith A=1{.

[b.1 Absolute value of the weights of the first layer of normalized FFTNet| . .
(5.2 Best deblurred images for each algorithm|.
(5.3 Failed deblurring by the DnCNN algorithm!.
(5.4 Difterent DnCNN deblurring results on the House image for varying of . .

[5.5 Comparison of normalized and unnormalized FF'T'Net for varying of . . .

v

List of Tables

[>.1 Network training results for different Lipschitz normalization schemes| . . 48
[5.2 Layer-wise Lipschitz constants of DnCNN| 49
(5.3 Deblurring results on different images (uo random)| 51
(5.4 Deblurring results on different images (uo=0)[. 53
[.5 Running time of deblurring methods| 54

1 Introduction

In recent years, Deep Learning has found its way into all areas of digital image processing
and computer vision. Better training algorithms, easier access to larger amounts of
training data and advances in GPU hardware have made it easier to train deeper and
deeper neural networks, even on consumer-grade computers. Despite this rapid progress,
many aspects, like the training process and several regularization techniques, are not yet

well understood on a theoretical level and rely on heuristics instead.

This thesis explores an inherent mathematical property of neural networks (and other
functions) called Lipschitz continuity. A network N is called Lipschitz continuous with

constant L if

IV (1) = N(@o)|| < Llly — 5|

for any input x; and x,. In particular, we investigate the training of neural networks
with the Lipschitz-constant L = 1, so called non-expansive networks. This topic was
motivated by a recent work of Meinhardt et al. |1], which proposes to utilize a single
neural network trained for image denoising as a plug-and-play regularizer to solve arbi-
trary linear inverse problems with variational methods. Linear inverse problems model
phenomena, e.g. Gaussian blur, as the result of applying a linear operator A to a clean
image u. Noisy measurements of a blurred image f make it impossible to extract the
clean image u with a simple inversion of A again, even if A is known. For this reason,

variational methods consider minimization problems of the form
i = argmin ||Au — f||3 + R(u)

where R is a regularization term. A minimizer for this term can be found with an
algorithm called proximal gradient descent. Meinhardt et al. [1] propose to replace a
step during this algorithm with the application of DnCNN [2]|, a powerful denoising

neural network. Even though the results are heuristically on par with state-of-the-art

1 Introduction

methods, a convergence of this new algorithm is not yet proved because the underlying
primal-dual algorithm complicates the convergence analysis. In this thesis an easier
algorithm is developed for which the non-expansiveness of the neural network and the
existence of a fixed point prove the convergence. It is shown that non-expansiveness
is in general not a property of DnCNN; explore different normalization schemes and
develop special architectures to enforce non-expansiveness in denoising networks. The
use of such networks for image reconstruction problems is experimentally tested by the

example of gaussian deblurring.

Apart from this particular use case, the Lipschitz continuity of deep neural network has
been a prominent research topic in recent years. Yoshida et al. [3] propose a regulariza-
tion term in the loss function which penalizes large singular values of linear layers. Even
though this leads to a smaller Lipschitz constant, there is no proof as to which constant
this will be. Gouk et al. [4] compute an upper bound for the Lipschitz constant for an
arbitrary p-norm of a network and use it to normalize the weight matrices of each layer
after a training step in order to provably enforce a user definable Lipschitz constant.
Only experiments for classification networks were given by authors, and showed in gen-
eral an increase in performance if used together with different regularization methods
and the chosen Lipschitz constant was large enough. A slightly different method called
singular value clipping was described by Sedghi et al. |5] in order to compute and re-
strict the Lipschitz constant of convolutional layers with respect to the euclidean norm.
However, it turned out that this approach only approximates the real Lipschitz constant
from below and needs larger amounts of computation for a closer result. Because of this,
their result did not satisfy the demand of a method that can be used to normalize a net-
work after each training step. A related field of research investigates the influence of the
Lipschitz constant of a neural network on the security against adversarial examples 6]
and the training of Generative Adversarial Networks [7]. Intuitively a small Lipschitz
constant means that a small change in input only leads to a small change in the output

of a network, which produces to better protection against adversarial attacks.

2 Mathematical Foundations

This chapter lists some important mathematical concepts in the fields of Linear Algebra
and Analysis and introduces notation that will be used throughout this thesis [[] Most
functions in the following chapters will be defined as mappings between normed vector
spaces. If the specific norm is not important it will be denoted with || - ||. Otherwise,

the notation will be as follows:

Definition 1. Let 2 = (21, -+ ,2,)T € K", for K € {R,C} and p € [1,00]. The p-norm

(or £,-norm) is defined as:

lzllp = (Z I%'Ip) p P <00 (2.1)

i=1

1200 = max[z;] (2:2)
Let T : K* — K™ be a linear Operator. The operator norm induced by || - ||, as a norm
on K" and || - ||, as a norm on K™ is defined as:
1Tlpg = S [Tl (2:3)
z||p=

For p = q this will be shortened to ||T||,. In particular, ||T||z is called the spectral norm.

For a matriz A € K" the Frobenius norm is defined as:

[Allr = | DD 1Al = Vir(A74) (2:4)

i=1 j=1

Lemma 1. Let A € K™, ||A||lz = Omax where Opay is the largest singular value of A

!The notation in this thesis closely follows the lectures Convex Optimization for Computer Vision and
Deep Learning by Michael Moller at the University of Siegen

2 Mathematical Foundations

(the square Toot of the largest eigenvalue of AT A). Furthermore:

|| Al[+ :m?XZ | Aijl (2.5)
i=1
1Al :miaxz | Aijl (2.6)
j=1
Proof. See page 57 of [§].]

The next definition of Lipschitz continuity is central to this thesis:

Definition 2. Let X and Y be normed vector spaces and f : X — Y a function. f is
called Lipschitz continuous with constant L if for any x1, x5 € X it holds that

1f (1) = @)l < Ll|y — 5] (2.7)

If f is Lipschitz continuous with constant L, it is also Lipschitz continuous for any L>L.
The smallest possible Lipschitz constant of f is denoted with L(f). The following lemma,

makes it easy to compute the Lipschitz constant of a function composition:

Lemma 2. Let Xi, Xs and X3 be normed spaces, fi : X1 — Xo and fo : Xo — X3
Lipschitz continuous functions with constants L1 and Lo respectively. Then the fy o fi

1s Lipschitz continuous with constant Ly Ls.
Proof. Let x1,x29 € X;. Then

[f2(fi(21)) = fa(fi(@2))]] < Lal[fi(z1) — fi(z2)|] < LiLa||xy — 22|

]

In general L(f o g) < L(f)L(g). For example consider f,g : R — R with f(z) =
max(z,0) and g(x) = min(z,0). Both functions have Lipschitz constants L(f) = L(g) =
1, but their composition fog is the constant zero function and thus has Lipschitz constant
0. Remarkably, the smallest Lipschitz constant also depends on the domain of f since
L(f|g-) = 0 in the above example. The sum of two Lipschitz continuous functions is

also Lipschitz continuous [4]:

2 Mathematical Foundations

Lemma 3. Let X1, X5 be normed spaces, fi, fa : X1 — X Lipschitz continuous func-
tions with constants Ly and Lo respectively. Then fi + fo is Lipschitz continuous with

constant Ly + Lo.
Proof. Let xq1,x9 € X;. Then

|(fi(21) + fa(21)) = (fa(2) + fal(a2))]
=[[(f1(z1) = f1(22)) + (fa(21) — falw2))]]
<I[(f1(z1) = fr(@2))[| + [[(fa(21) = fala2))]

<Li||ay — o] + Lol|zy — 22|

=(Ly + Lo)[zy — 22|

]

Trivially, if f has Lipschitz constant L the function ¢ = Af with A € R has Lipschitz
constant |A|L. In order to compute a Lipschitz constant one would have to check (2.7
for every possible x; and x5. If the function is differentiable there is a slightly easier

way.

Lemma 4. Let f : R — R™ be a differentiable function and ||J¢(x)||, < oo for any x.

Then f is Lipschitz continuous with respect to the p-norm with constant

L = max ||/ (2)ll, (2.8)

z€eR™

where Jy is the Jacobian matriz of f.

Proof. According to the mean value theorem for any x;, 2, € R" there is a point Z on

the line between x; and z5 such that

f(%) - f(l‘l) = Jf(f) : ($2 — 1)

Taking the norm on both sides leads to

[f(z2) = flz)llp =[T5(2) - (22 — 1)l
<|[Je(@)]pllz2 — 21|l

10

2 Mathematical Foundations

where the last inequality is because the matrix p-norm is consistent with the vector

p-norm. Taking the maximum matrix norm over all x € R" yields the proof. O

The convergence properties of some algorithms depend on the Lipschitz constant of the

gradient of a function:

Definition 3. Let f : R™ — R be continuously differentiable. f is called L-smooth if

V f is Lipschitz continuous with constant L, i.e.
IV f (1) = Vf(z2)]| < Lf|zy — 2| (2.9)

for any x1, x5 € R".

In the following the concept of contractions and non-expansive functions will often be
referenced. An important property of contractions is that, according to the Banach

fixed-point theorem, they always have a fixed point.

Definition 4. If a function f : X — X s Lipschitz continuous with constant L < 1
then f 1s called a contraction. If L < 1 then f is called non-expansive. This means that

any contraction is also non-exrpansive.

Theorem 1. (Banach fized-point theorem)
Let M be a closed subset of a normed vector space X and let f : M — M be a contraction.
Then there ezists a unique fized point & € M with f(z) = &. The sequence x,+1 = f(x,)

converges to x for any starting point xo € M.

Proof. See |9 O

11

3 Image Reconstruction Problems

In image processing, often an observed image f is actually the result of a linear transfor-
mation of a clean image. For example, Gaussian blur can be modeled as the convolution
k x u of a known Gaussian kernel £ and an image u which in turn can be written as
Au where A is the matrix representation of this convolution. Unfortunately, it is not as
simple as solving the linear equation Au = f to deblur f, because the measured image
is subject to noise. Small measurement errors € lead to large changes of © = A™'(f +¢).

Problems of this kind are called ill-posed:

Definition 5. Problems whose solution does not exist, is not unique or do not depend

continuously on the initial conditions are referred to as ill-posed.

Typical examples for ill-posed inverse problems in image processing are denoising, de-
blurring, super-resolution and inpainting. There are different approaches for finding a
satisfying solution to an ill-posed problem, if a solution even exists at all. In the fol-
lowing section three commonly used methods will be explained. The first section deals
with solving the problem with energy minimization approaches that circumvent the ill-
posedness by introducing a regularization function. The second class of methods tries
to learn a function that solves the problem directly for a given input image. Today
this is commonly done with neural networks. The last approach is a hybrid of energy

minimization and learning based methods.

3.1 Energy Minimization Methods

In order to find a satisfying solution to an ill-posed problem, prior information about the

distribution of real images has to be incorporated in the form of regularization functions.

12

3.1 Energy Minimization Methods

Variational methods consider an energy minimizing approach where

@ = argmin E(u) = argmin H;(Au) + R(u) (3.1)
The data fidelity term H(Au) punishes large deviations of the measured image f and
the transformed image Au. For example, the squared error H;(Au) = ||Au — f]|[3 could
be used. To find a good regularization function R is a lot harder, because it should be
large for images that intuitively do not look like real images and small otherwise, which
is a statement that is hard to grasp mathematically. Often the TV-L1 regularizer |10]
R(u) = ||Vul|;, which punishes oscillations of u, is used because natural images tend
to have relatively large areas with similar color and edges between objects are generally
sharp. The following sections will explain algorithms for finding a minimizer for general

functions like £ and give criteria under which the algorithms converge.

Definition 6. A subset C of a vector space V' s called convex if for all x,y € C' and
all A € [0,1] it holds that Ax + (1 — N)y € C, i.e. the line that connects two points in C
completely lies in C'.

A function E : C — R is called convex if for all z,y € C and all A € [0,1] it holds that
E(Az + (1= Ny) < AE(z) + (1 - N E(y)

Convex functions have the nice property that every local optimum is also a global op-
timum. Furthermore, if F is convex and differentiable, the necessary condition for an
optimum VE(x) = 0 is also sufficient, meaning that there is a global optimum at x.
Since it is almost impossible to compute the roots of VE directly in higher dimensions,
iterative methods like gradient descent are most commonly used to find a minimizer.
The idea behind gradient descent is to update the current iterate v* in a direction in
which the objective function decreases. Because the gradient of a function points into
the direction of the steepest increase, a step into the opposite direction yields the fastest

decrease of the function value. The algorithm is a fixed point iteration of the form
W = uF — TV E (") (3.2)

The parameter 7 is called step size (or in context of neural networks also learning
rate) and influences the convergence rate of the algorithm. Unfortunately the function

G(u) =u— 7V(E(u)) is only a contraction in specific cases, so the Banach fixed-point

13

3.1 Energy Minimization Methods

theorem can not be applied for a convergence analysis. However there is a slightly
stronger version of non-expansiveness which is a sufficient condition for the convergence

of a fixed point iteration if a fixed point exists |11}/12]:

Definition 7. A operator G is called averaged if there exists a non-expansive operator
H such that
G=ald+(1-a)H (3.3)

for a a € (0,1)

Compositions and convex combinations of averaged functions are averaged again. It is
easy to see that averaged functions are non-expansive, because the Lipschitz constant of
ald+(1—a)H is a+(1—a) = 1. Later it will be important that the convex combination
of an averaged operator and a contraction is averaged which will now be proved with
the help of Lemma [3]

Lemma 5. Let Ty be averaged and Ty be non-expansive. Let o € (0,1). Then
G=aT1+ (1—a)Ty (3.4)
s averaged.

Proof. T} is averaged, so there exists a non-expansive operator T and 3 € (0,1) such
that

T, = B1d+(1 — B)T

With this, G can be written as

G :OéTl + (1 — O{)TQ

=a(fId+(1—-8)T) + (1 —)Ty
—afld+a(l —)T + (1 —)T,

—aBId+(1 — af) (a(l_ﬁ)iw L-o)

T
1—ap 1—a,82

Since v := af € (0,1), all that remains is to show that the operator

ol -P) 11—«
H = 1—aﬁT 1—aﬁT2

14

3.1 Energy Minimization Methods

is non-expansive. Both T and T, are non-expansive, so according to Lemma [3| a upper
bound for the best Lipschitz constant of H can be given by the sum of the two factors
in front of T and Ty:

a(l=p0) 11—«
1—ap +1—045
1—ap
T 1—af
=1

So H is non-expansive and G is of the form
G=~vld+(1—-~)H

[]

With the notion of averaged operators, a sufficient condition for the convergence of

gradient descent can be given:

Theorem 2. If E is convex and L-smooth and 7 € (0, %) then G(u) = u— 7V E(u) is
averaged, i.e. if E has a global minimum the gradient descent algorithm converges to

that minimizer.
Proof. See page 16 of 13|]

Coming back to the energy function E(u) = H;(Au)+ R(u), one problem still remains.
Even though the data fidelity term is usually differentiable and convex, e.g. as it is
the case for H;(Au) = ||Au — f||3, this is not always true for common regularizers.
For example, even though R(u) = ||u||; is convex, it is not differentiable at u = 0. A
possible approach is to use proximal gradient methods which incorporate the proximity

operator [14]
1
prox g(v) = argmin R(u) + 5“1} —ull3 (3.5)

With this definition the so called forward-backward splitting algorithm can be used to
solve minimization problems of the form E(u) = F(u)+ G(u) where F' and G are convex

and only F'is L-smooth. Since the proximity operator is always averaged [15], for a step

15

3.2 Learning-based Approaches

size T € (0, %) the algorithm converges to a minimizer of E for any starting point u:
u™ = prox ;¢ (uf — TV F(u")) (3.6)

This is a gradient descent step on F' followed by a proximity step on G. For the specific
energy function E(u) = Hf(Au) + R(u) and an application of the chain rule this leads
to

uFt! = prox p(u* — TATV H(Au®)) (3.7)

The experiments in this thesis, however, will be limited to the update rule
W = (1 — a)(uf — TATVH (AuP)) 4+ a(u” — TV R (u)) (3.8)

where R, is the Huber-loss [16] which smoothes the 1-norm around 0 in order to make
it differentiable.

R.(z;) = Z he(;) (3.9)

with
32 if 2] <,
he(z) = (3.10)
e(]z] — 3€), otherwise.
Since equation is the convex combination of gradient descent steps on H; and R,

which are averaged operators, it converges to a minimizer of F.

3.2 Learning-based Approaches

Learning-based approaches aim to find parameters for a function Ny which directly maps
an image u to a plausible solution Ny(u) of the inverse problem. The parameter vector
6 is found by a training algorithm which requires often large amounts of training data,
i.e. inputs x; for which the desired output y; is already known. Recent advances in the
field of deep learning and the availability of large amounts of freely accessible training
data sets make neural networks the most common choice for Ny. McCann et al. [17]
give an overview of typical network architectures and training algorithms, in particular
for inverse imaging problems. Deep neural networks have been successfully applied to
image deblurring [18], denoising [2,[19], inpainting [20-22|, colorization |23] and many

other tasks while achieving state-of-the-art results.

16

3.3 Hybrid Methods

One advantage that neural networks have over variational methods is that they do
not require as much knowledge of the underlying problem to work well. Often the same
network architecture can be used for many different tasks. However, the training data has
to fit the specific problem. This also means that each trained neural network in general
only works for that precise problem. Moreover, the performance of a network is sensitive
to the distribution of the data it was trained on. For example, a network that was trained
to detect dogs in an image while using training data that did not contain any other kind
of animal could incorrectly detect a cat as a dog during inference. The performance also
depends on the choice of the training algorithm, the concrete architecture and various

regularization techniques.

3.3 Hybrid Methods

Coming back to the energy minimization method for solving linear inverse problems in
image processing from Chapter [3.1], in the following sections it will be explained how
the hard to find regularization term of the energy function can be replaced by a neural
network. Chang et al. [24] propose to learn the proximal operator as a projection onto
the feasible set of images by training a neural network. Heide et al. [25] proved that
any gaussian denoising algorithm can be expressed as a proximity operator. Since this
is a central foundation for this thesis, a short proof for this statement will be given now,
as presented as in [25]. Given an image u € R", the likelihood to observe an image f

corrupted by gaussian noise with standard deviation o is given by

1 —|lf - UH§)
U) = ——exp| —= 3.11
plfln) = e (U (3.11)
In order to find u, given f, Bayes’ rule is applied:
p(flu)p(u
p(ulf) _ 2l/lwp(u) (3.12)

p(f)

17

3.3 Hybrid Methods

The maximum-a-posteriori estimate of u is given by the maximum of this term, which

is independent of the denominator

uprap = argmax p(u)p(f|u)
= argiax log(p(u)p(f|u))

= argmax log(p(u)) + log(p(f|u))

u

. 1
= argmin — log(p(u)) + 51 — ull

u

=prox ,g(f)

This result motivates the replacement of the proximity operator in the update rule of

forward-backward splitting (equation by a generic gaussian denoising algorithm G.
u" = G(uF — TATV H(AUY)) (3.13)

Heide et al. [25] and Venkatakrishnan et al. [26] have successfully used powerful denoising
algorithms like Non-local means [27] and BM3D |28] to solve various linear inverse prob-
lems. Meinhardt et al. [1] considered using a denoising neural network like DnCNN |[2]
and achieved state of the art results. An overview of more algorithmic schemes and how
to replace their regularizers with neural networks can be found in Table 1 of [29]. The
advantage over pure learning based methods is that only a single network is required for
all tasks. All that has to be changed is the operator A in the data term, which does not
require a relearning of the network. Because the proximal operator is equivalent to an

implicit gradient descent step, i.e.
prox ,g(u") = u* — 7V R(u") (3.14)

the right summand of equation can be replaced by a denoising algorithm as well,
which leads to the update rule

W = (1 — a)(uf — TATVH(AuF)) + aG(u") (3.15)

The convergence of this method depends on G being at least non-expansive, because
then, according to Lemma 5], the update step is an averaged operator, which means that

the fixed point iteration converges if a fixed point exists. In general, neural networks

18

3.3 Hybrid Methods

are not non-expansive, which motivates the explicit enforcement of Lipschitz constant 1
during the training. An overview of different convergence criteria that also include other
algorithmic schemes can be found in [29]. Sreehari et al. [30] give restrictive criteria
under which a neural network represents a proximal operator. Chan et al. [31] propose
a provably convergent plug-and-play algorithm which converges for bounded denoisers,

however not necessarily to a fixed point.

19

4 Training of Lipschitz Continuous

Networks

This chapter starts with a more in-depth introduction to neural networks. The foun-
dations layed down in that section will be used extensively throughout the rest of this
thesis. After that, a short introduction to the state-of-the-art denoising network DnCNN
is given and it is shown that a trained DnCNN is in general not non-expansive by giving
examples for input images which violate the Lipschitz criterion. Motivated by that,
related research on enforcing the Lipschitz continuity of neural networks is presented.
It is shown, how to compute the Lipschitz constant of a neural network and how to
use this constant in order to make the network non-expansive with respect to either
the £; or /5 norm. In the last section a special network architecture which is inherently
non-expansive, and thus does not require any Lipschitz normalization during training,

is described.

4.1 Recalling Neural Networks

At their core, neural networks are a framework for function approximation. Supposing
a set of training features x; and their ground truth labels y; that are connected by an
unknown function G with G(x;) = y;, the objective is to find a parameterized function
N and a set of parameters 6 such that N fits G well, i.e.

No(z;) = G(2:) = yi (4.1)

It is important that the model is not only a good approximation on the training set but

also generalizes to previously unseen examples.

20

4.1 Recalling Neural Networks

One very simple neural network is linear regression which models the relationship be-

tween z; and y; as an affine linear function.
No(z) =Wax+b (4.2)

where W € R™"™ b € R™ and 6 consists of the vectorized entries of both W and
b. Even though the expressiveness of linear models is limited to use cases in which
the output depends linearly on the input, they can still be used as building blocks for
deeper neural network architectures. Usually networks for more complicated problems
comprise deeply nested functions. Note that simply nesting linear functions would result
in a linear function again. For this reason most architectures alternate between linear

and nonlinear functions.

No(z) = (prooi0o¢_ 100, 10--0¢100)(T) (4.3)

Here the ¢; denote (affine) linear, the o; nonlinear functions (also called activation
functions) and [is the number of layers. For example, the ¢; could be affine linear
functions as above. Often the same activation function is used across the whole network,

so, for [= 2, that would result in:
Ng(l’) = O'(WQO'(WL’E + bl) + bz) (44)

Once again (and for the rest of this thesis) 6 denotes the collection of all network pa-
rameters, which in this case are the entries of W; and b;. A layer Wz + b is called a

fully-connected layer.

Some examples for pointwise activation functions are sigmoid, tanh and ReLU:

et — e~
tanh = 4.5
anb(e) = S5, (4.5
1
e x
ReLU(z) = max(0, x) (4.7)

Graphs for these functions can be seen in Figure [4.1] Because of its simple to compute
and non vanishing gradient for large inputs, ReLU and variants are generally the first

choice in modern networks [32].

21

4.1 Recalling Neural Networks

Il Il Il Il Il Il Il Il Il
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

(a) Sigmoid (b) tanh (c) ReLU

Figure 4.1: Different activation function

In order to find 6, a loss function which penalizes large deviation of the network’s output
and the ground truth labels y; is defined. A popular loss function for regression is the

mean squared error:
L(z,y) = ||z —ylf (4.8)

These losses are then summed over all training examples and define the error of the

network given the current parameter 6.
E(0) =Y L(Ny(x:),v:) (4.9)

The objective is now to find § = argmin, E(6). This is usually done with one of the
many variants of gradient descent, as defined in Section [3.1], with the following update
rule:

Ot = ' — TVE(H) (4.10)

Since E is usually a non-convex function, it is not guaranteed that this iteration con-
verges to a global minimizer. Variants like gradient descent with momentum [33| or a
very popular algorithm called Adam [34] are often used to avoid being stuck at a local
minimum and to increase convergence speed. The gradient is computed by an algorithm

for computing the chain rule called backpropagation.

If the number of training examples is very large it is impractical to compute the loss of
all examples for every gradient descent step. The idea of stochastic gradient descent is
to divide the training set into (random) non-overlapping subsets, called mini-batches,
and to do a gradient descent step on any of these sets sequentially. Once a step on
every mini-batch has been made, they are recomputed and the optimization is repeated.

One iteration over all mini-batches is called an epoch. The gradient on these sets is an

22

4.1 Recalling Neural Networks

approximation of the real gradient but becomes worse the closer the current iterate is to
a minimizer. Despite this problem stochastic gradient descent is the main approach for
training deep neural networks and has been shown to even reduce overfitting and thus

improve generalization.

As stated above a neural network is a composition of linear and nonlinear functions,
called layers. Besides fully connected layers there are many other types, two of which
will be explained in more detail in the following sections. These two layers are the
building blocks for the denoising network DnCNN [2| which will be used later on.

Convolutional Layers

Many tasks in computer vision like image classification and image denoising can be solved
by neural networks. However, this means that the network has to take an image as its
input. Supposing that images are represented as a one-dimensional vector u € R*"% of
pixel values, where c is the number of channels and w and h are the width and height, the
number of weights required for a fully connected layer which takes u as an input grows
very fast. For example, for a relatively small RGB-image of size 80 x 80, a square fully
connected layer without bias would have over 368 million parameters. This does not
only slow down inference and training time, but also increases the memory requirements
that are necessary for computing the gradients of the weights with the backpropagation

algorithm dramatically.

Many problems in image processing are translation invariant, for example a network
that should recognize an object in an image should still be able to recognize it even after
it has been moved. This can be achieved by making the output of a layer at a specific
pixel only dependent on the local neighborhood around that pixel. Mathematically this
can be expressed as a convolution operation which, in a continuous setting, is defined

as:

(k= f)(z) = /n k(t)f(x —7)dr (4.11)

The value of (k * f)(z) can be interpreted as the weighted sum around f(x) where the
weights are given by the kernel k. For convolutional layers [35] this formula is discretized

and it is assumed that & and f have finite support] Thus the convolution of the kernel

IThis thesis will only ever use zero padding

23

4.1 Recalling Neural Networks

(2s +1) x (2t + 1)-dimensional filter kernel £ and the image f is defined as

(k* Nle,yl =D > ki jlfle =iy —] (4.12)

t=—sj=—1

Pixels outside of the dimensions of the image are assumed to be zero. Note how this
definition only applies to a single channel of an image. In convolutional layers the
output of the convolution of each channel is summed up. This can be expressed as the
convolution with a n. x (2s + 1) x (2t 4 1)-dimensional kernel where the filter does not

"move" in the channel direction.

e D) =550 S kled, e — iy — (4.13)

c=1 i=—sj=—t

This maps an image f € R*"*% to an output k* f € R"*™. To generate multiple output
channels usually multiple filters k; are employed. Instead of using the above formula,
it is more convenient to interpret the j-th output channel as the sum of n. separate
convolutions of each of the n, input channels and the filters k; ;, which in the following
will denote the filter that maps the i-th input channel to the j-th output channel. If u;
represents the i-th input channel the complete formula for a convolutional layer can be

written as

Ne

(@ (w); = > (i * i) (4.14)

i=1
Like fully connected layers, convolutional layers usually have a learnable bias, which,
however, will be ignored in this thesis because none of the used networks will use them
and they do not influence the Lipschitz continuity. Since convolutional layers without
bias are linear, they can be written as the matrix multiplication of a suitable matrix A

and the (vectorized) input w.

Example 1. Consider the 1-dimensional discrete convolution

(k= f)(x Zk (x —s)

i=—s5

24

4.1 Recalling Neural Networks

with _

and

l{?: kg

With zero padding the result of the convolution is

ks f1
ko f1 + k3 fo
kif1 + kafa + kafs
kifo+ kafs + kafa
k1 f3 + ko f4
k1f3

Multiplication of the matriz A and the zero padded vector u yields the same result:

ks ks 0 0 0 ki [0

ki ke ks 0 0 0 |fu

|0 R ke k0O f ~(bx)
0 0 ki ke ks O | fa

ki ko k3| | fa

ks 0 0 0 Kk kol |0

The matrix A is a circulant Toeplitz matrix whose diagonals have a constant value and

is constructed from the weights of the filter kernel. The circulant matrix of a vector

x =[xy, , Ty is defined as
Ty T2 0 Ty
cire(z) := | T (4.15)
o 1 o m

25

4.1 Recalling Neural Networks

The matrix in the above example can be written as Circ(l;:) where k is the zero-padded
convolution kernel. For 2-dimensional convolutions, as defined above, A is a double

block circulant matrix [4, 5|

K, Ky, - K,
Ky Ky -+ Ky

A= . (4.16)
Ky Ky - K,

where K is the circulant matrix corresponding to the i-th row of k, padded with zeros
to the same size as the output of k * f, as in the example above, i.e. K; = circ(l;’,»)
Up until now the matrix representation only describes the transformation from a single
input to a single output channel. If A; ; is the transformation from the j-th input to the

i-th output channel, horizontally concatenating over j and vertically over 7, i.e.

A1,1 e A1,c,€_1
A= . : (4.17)
Agq - A

Ck;Ck—1

yields the matrix representation of the whole convolutional layer. Here ¢;_; and ¢, denote
the number of input and output channels respectively. With this matrix representation
a convolution could also be interpreted as a fully connected layer with shared weights
[36].

Another way is to represent a convolutional layer as element wise multiplications in the
frequency domain by using Fourier transformations [37]. The Fourier transform of a
function f : R™ — R is defined as

F(HE = [f)e™endy (4.18)

Rn

This is a linear operator and can be inverted by using the following formula

fx)= | F()&ede (4.19)

Rn

If a is a discrete signal of length n, i.e. a = (ay,--- ,a,), the Discrete Fourier Transform

(DFT) maps this signal to a vector of the same dimension in the frequency domain and

2the index here describes the whole row and not a single element like in the example

26

4.1 Recalling Neural Networks

can be represented as the matrix multiplication with the DFT matrix F' (as defined
in [5]):
a=F(a)=Fa (4.20)

For images, which are discrete two dimensional signals, the transformation is accom-
plished by first transforming vertically and then transforming the result horizontally (or

the other way around), which for square images A € R"*" is equivalent to
A=FTAF (4.21)
The convolution theorem states that

frg=F 1 F(f) Flg) (4.22)

With this the output of a convolutional layer can be written as

Ne

(¢ (w)); = Y (Fkiy) © F(us)) (4.23)

i=1
where ® denotes the pointwise multiplication operator. Note that for this to work, the
k; j and u; have to be zero-padded to the same size because otherwise the pointwise mul-

tiplication is not defined. In the following in this zero-padding is implicitly assumed.

Batch Normalization

The distribution of the output of a deep neural network can vary greatly between each
layer. For each new training example the distribution of the input data of the layers
changes slightly and each layer of the network has to adapt to this change. Furthermore,
very large or very small layer outputs lead to very large or very small gradients during
backpropagation, which affects the learning speed negatively. Ioffe et al. [38] proposed a
technique which normalizes the output of each layer for each mini-batch by transforming
it to to have zero mean and unit variance. Because this might be too restrictive, two
learnable parameters that are able to undo this normalization are introduced. Following

the notation of [4], the output of a layer is transformed like this:

bn — dia Y
¢ (@) =d g(Var|[z]

) (z — Elz]) + 8 (4.24)

27

4.2 Lipschitz Continuity of DnCNN

Nonlinear Mapping Residual Image

Conv + RelLU
A\ 4
Conv + BN + RelLU
Conv + BN + RelLU
Conv + BN + RelLU
A 4
Conv

Figure 4.2: Architecture of DnCNN H

where v and f are the learnable parameters of the same size as x and E[z] and Var|z]
are the mean and variance of the current mini-batch. In modern deep networks batch
normalization is very often used to decrease training time. Since there are no mini-
batches during inference, a running mean and variance is calculated during training and

used during inference.

4.2 Lipschitz Continuity of DnCNN

DnCNN (short for Denoising Convolutional Neural Network) [2] is a deep neural network
which is able to reach state-of-the-art results for removing gaussian noise with known
standard deviation from images. There is also a variant for blind denoising in which the

noise level is not known beforehand.

The architecture of DnCNN can be seen in Figure [£.2] The first layer is a convolutional
layer with 3 x 3 kernels that increase the number of channels to 64. This is followed by
15 convolutional layers, again with 3 x 3 kernels, which do not change the number of
channels. Each of the middle layers use batch normalization between convolution and
activation function. The last layer is one more convolutional layer which decreases the
number of channels from 64 to the the same channel number as the input image had,

which in this thesis will always be 1 (grayscale images).

Instead of directly learning to remove the noise from the input image, the output of
the network is actually the raw noise itself. Removing the noise can then be achieved
by subtracting it from the original image. This design decision is a form of residual
learning and makes it possible to train deeper networks in a shorter amount of time.

However, this feature is detrimental when it comes to proving that the denoising by the

28

4.3 Layer-wise Lipschitz Constant Computation

network is a contraction. The actual denoising function can be written as
G(u) = Np(u) —u (4.25)

where ANy(u) is the trained network. Since the Lipschitz constant of the (negative)
identity function is 1, according to Lemma [3| an upper bound for the Lipschitz constant
of G is at least 1, meaning that it cannot be proved that the denoiser is a contraction.
Note that it is still possible that the best Lipschitz constant L(G) is smaller than 1,
because for example the function f(z) = x — = has best Lipschitz constant 0 and not
2, but it is not possible to be proven in the current theoretical framework used in this

thesis.

To prove that it is not contractive or even expansive it is enough to give a counterex-
ample, i.e. a pair of images uy, us for which ||G(uy) — G(ug)|| > ||ur — ue||. Surprisingly
finding such images is not very hard. A variation of the fast gradient sign attack [40]
was used. Given an image u; the idea behind this method is to go a small distance
in the direction of the sign of the gradient of the network with respect to the input.
Because the gradient points into the direction of the largest change, the hope is to have
a large difference of the output of the network with only a slight change of the input.

The formula for us is as follows:
ug = uy + esign(VG(uy)) (4.26)

Using the official PyTorch version of DnCNN trained on a noise with standard deviation
of 0.098 several expansive examples were able to be found with this method. In fact,
almost any choice of u; which does not contain any noise is such a counterexample.
Figure shows such an example. It is also remarkable that DnCNN seems to add

noise to the image if the image did not contain any noise in the first place.

4.3 Layer-wise Lipschitz Constant Computation

In order to constrain the weights of a network to make it contractive, a way to compute
its current Lipschitz constant is required. Dividing the output of the network by this

constant, for example, would make the network non-expansive. The calculated constant,

29

4.3 Layer-wise Lipschitz Constant Computation

Figure 4.3: Proof that denoising with DnCNN is expansive w.r.t. the /5 norm.
Hg(ul) — g(UQ)HQ =243 >0.39 = Hul — U2||2

which is actually an upper bound of L, has to be as small as possible in order to not

restrict the network too much.

As proved in Lemma [2, the composition of Lipschitz continuous functions is Lipschitz
continuous with a constant that is the product of the constants of its parts. Since neural
networks are just function compositions this suggests to compute the Lipschitz constant
for each layer independently to get an upper bound for the best Lipschitz constant.
Gouk et al. give ways to compute the Lipschitz constant of the most commonly
used layers, which will be explained in the following. To underline that the Lipschitz
continuity depends on the chosen norm, the Lipschitz constants with respect to p-norms
will be denoted as L, and the best Lipschitz constant as fp, if the norm matters in that

context.

Fully Connected Layers

Fully connected layers are described by affine linear functions ¢/¢(x) = Wa + b. The

Lipschitz constant with respect to a p-norm is a positive real number L, that satisfies

|(Way +0) = (Way +b)[, < Lplxr — 2l
S|Way = Was||, < Ly|lzr — 22lfp (4.27)

S|[W (1 — 22)lp, < Lyllz1 — 22|

Setting © = 21 — x5 and assuming x # 0 yields

Welly , (1.28)

1E3|™

30

4.3 Layer-wise Lipschitz Constant Computation

This means that every possible Lipschitz constant is smaller than the matrix norm
induced by the p-norm, which is the supremum of the left expression. The smallest

Lipschitz constant is the number L,, which fulfills the inequation with equality.

— Wax
Lp(¢fc) = sup || ||p

w20 |12y

= [[Wll (4.29)

This shows that it is possible to compute the best Lipschitz constant and it does not
depend on the bias of the layer. In case of p € 1,00 the matrix norm can be computed
easily with the equations in Lemma In case of the 2-norm one has to compute
the largest singular value of W. This can be done by calculating the singular value
decomposition of W which consists of unitary matrices U and V' and a diagonal matrix
> such that

W =Uxv? (4.30)

The largest entry of 3 is then the spectral norm of W. Another way to find the largest
singular value is to find the largest eigenvalue of A = WTW which can be done using a
power iteration of the form ‘

Ax’

T 4.31
S AT (4.31)

Using this iteration, the sequence (1/(||Az*||2))xr converges to the spectral norm of W.
Note that this series approaches the real value of ||W]|; from below, which actually
results in a value smaller than Zp that is not a Lipschitz constant. For a large amount

of iterations this error is neglectable.

Convolutional Layers

As detailed in Chapter [£.1| convolutional layers can be interpreted as fully connected
layers with shared weights and a weight matrix that is the concatenation of double block

circular matrices of the form

K, Ky, - K,
K, Ky - Ksq

Agg=1 . . (4.32)
Ky, Ky - K,

31

4.3 Layer-wise Lipschitz Constant Computation

where K is the Toeplitz matrix built with the entries from the [-th row of the convolution
kernel k;; that maps the i-th input channel to the j-th output channel. Due to the
construction of A;; each row and each column contains every entry of that convolution
kernel exactly once, so the sum of each row or the sum of each column is the same
as the sum of each kernel entry. This means that, according to Lemma [1] [|A; ;] =
|4 ;oo = ||Kij||1 where ||k; ;|1 is the vector 1-norm applied to the 2-dimensional kernel

k; ; interpreted as a 1-dimensional vector.

The full matrix that represents the convolutional layer is the block matrix

Al,l e Al,ck,1
W = : : (4.33)
Ack,l o A

CksCk—1

With the same explanation as in the last section the best Lipschitz constant of the layer

is equal to the operator norm of that matrix
Ly(¢°™) = [[W]], (4.34)

For p = 1 this is the maximum column sum of W. Analogously, for p = oo it is the

maximuin row sum.
W1 :m?XZ [Aijll = mfxz [1Ki 5]l
i i

(4.35)
Vo = ma 37 [Ag oo = max D [[Bil
J J

The 1-norm and co-norm can be computed very efficiently and directly depend on the
values of the convolution kernels. The spectral norm is a lot harder to compute. Gouk
et al. propose to use a power iteration analogous to equation without constructing

the matrix representation of the layer by using transposed convolutions |4}/41].

Sedghi et al. [5] propose an alternative approach that uses the Fourier transform of the
convolutional layer to compute the singular values. This approach will be detailed in the
following section. The notation from the paper will be adjusted to the notation used in
this thesis. Let k; ; € R**® be the convolution kernel that maps the i-th input channel
to the j-th output channel. The discrete Fourier transform of this single 2-dimensional

convolution kernel, F(k;;), has a shape that depends on the size of the input image

32

4.3 Layer-wise Lipschitz Constant Computation

that the convolution should be applied to. This is because the kernel has to be padded
with zeros before the Fourier transform can be computed. The absolute value of each
entry of the complex matrix F(k; ;) is a singular value of the corresponding convolution.
However, this ignores the fact that in convolutional layers a single output channel is the

sum of convolutions with all input channels, i.e.

Ne

(0°"(u)); = Z(/fi,j * ;)

= (Flkij) © F(u;))

=1

The block F; := F(k.;) has the same shape as the input of the convolutional layer.
There are as many blocks of this kind as there are output channels. Let (F})s, € R'*"
denote the the slice of F; at the specific pixel position (s,t). Stacking all (F}),, for

7 =1,...,n,, where n, is the number of output channels yields the matrix

- (Fl)s,t -
M,, = : € Roxme (4.36)

T (Fno)s,t T

The output slice of the layer at a specific pizel position (instead of at a specific channel

as before) can then be written as

(@ (W) s = Moo (F()sr) (4.37)

i.e. the matrix multiplication of M,,; with the corresponding slice of the Fourier trans-
form of u at pixel position (s,t). Sedghi et al. [5| proved that the set of singular values
of the convolutional layer is equal to the union of the singular values of the matrix M,

at every possible pixel.

a(¢m) = o (M) (4.38)

s,t
This means that any singular value of any M, greater than 1 would make the layer

expansive.

33

4.3 Layer-wise Lipschitz Constant Computation

Batch Normalization

Since batch normalization is a affine linear function

" (z) = diag (L) (x —E[z])+ 8 (4.39)

Var|z]

The Lipschitz constant is equal to the matrix norm of the diagonal matrix

D := diag (ﬁ) (4.40)

The row sum and column sum of diagonal matrices are always the same, so
|Dl[x = |[Dl|ec = max [D;| (4.41)

The singular value decomposition of D is IDIT where I is an appropriately sized identity
matrix. This means that the spectral norm of a diagonal matrix is also max |D;;|. Thus
the best Lipschitz constant of a batch normalization layer is the same with respect to

any p-norm with p € {1,2,00}

Vi

T bny __ X
Ly(¢™) = ma Var[z;]

(2

(4.42)

Activation Functions

The largest slope of the ReLLU is 1, thus making it non-expansive. Another interesting
way to prove this is to see that ReLU is also the proximity operator of the convex

characteristic functionf’| of the non-negative real numbers

0, if x € (0, 00)
X[o.00) () = _ (4.43)
oo, otherwise

Because the function is oo if z is outside of the set, the prox operator reduces to

Prox , .., (v) = arg[migl llz — v|2 (4.44)
z€[0,00

3This is different than the usual characteristic function which is 1 when z is in the set and 0 else

34

4.4 Lipschitz Normalization

If v < 0, the closest point in [0, 00] is 0 and if v > 0 then v is in the set and the closest

point is v itself. Thus, the proximal operator can be rewritten as
Prox y, ., (v) = max(0,v) = ReLU(v) (4.45)

In fact most common activation functions are proximity operators of some function
which is shown in [42]. Since they have Lipschitz constant 1 they can be ignored when

calculating the Lipschitz constant of the whole network.

4.4 Lipschitz Normalization

In this section we will give methods on how to restrict the parameters of a layer in
order to make it Lipschitz continuous with a given constant A. The restriction of the
parameters should happen during the training of the network by projecting the weights
of the layers to the feasible set, i.e. weights with which the layer has the right Lipschitz
constant. This can be achieved either after each or just some gradient descent steps,

which then, with the projection operator 7, can be modified to
0 = 7(0" — TVE(9")) (4.46)

The current Lipschitz constant (before the normalization) with respect to a given p-norm
will be conveniently denoted as ||[W]|,, where W is the linear part of the respective layer.
This includes convolutional layers, which have been shown to just be a special case of

fully connected layers.

Gouk et al. [4] propose to enforce a Lipschitz constant using the following projection

(WA = — L (4.47)

max(l, HV‘//\Hp)

Note that multiplying the weights of a filter of a convolutional layer with the fraction in
this formula yields the same result because of the weight sharing property. This formula
projects W onto the closest linear operator with the wanted Lipschitz constant, where

"closest" means that the distance measured as the operator norm of the difference of

35

4.4 Lipschitz Normalization

the projection and W is as small as possible.

(W, \) = argmin |[|[W — W'||, (4.48)
W][p<A

Gouk et al. enforce Lipschitz continuity in their paper as a way to regularize a network
and improve its performance on classification tasks. For this, they generally use relatively
large A > 1 and remark that smaller A negatively influence network performance. For the
purposes in this thesis A = 1 is required and first tests have shown that the normalization
scheme proposed by Gouk et al. is to restrictive. Normalizing the network completely
destroyed the training progress up to that point. For this reason a different projection,
that measures closeness as a change of the weights of the layers which is as small as
possible, was used. This can be expressed as using the Frobenius norm instead of the

operator norm in the projection formula

(W,) = argmin ||W — W'||g (4.49)
W <A
||W — W’||F should be interpreted as the Frobenius norm of the matrix representation
of the layers with the respective weights. For Lipschitz continuity with respect to the
I-norm it is easier to find the projection with respect to the absolute sum matrix norm
[[Wl[s = >_;; [Wi;| which leads to the analogous formula

ng(W, \) = argmin ||W — W'||s (4.50)

W [lp<A
Finding a minimizer for these expressions requires to only change the subset of weights
which make the Lipschitz constant too large while not changing the weights that have
no influence. Finding this subset differs for each p-norm and will in the following be

described for the cases p =1 and p = 2.

For p = 1 and given a fully connected layer, the Lipschitz constant is the maximum
absolute column sum of the weight matrix. Any column that sums to more than 1 has
to be normalized by dividing its weights by that sum. If a column sums to less than
1 then it does not have a influence on the expansiveness of the layer. Let W.; denote
the i-th column of W. A formula for the above idea can then be given by the row-wise

definition .

W.
max (1’ 2 \/‘\’Vi,j\>

ms(W.j, \) = (4.51)

36

4.4 Lipschitz Normalization

This is the ¢, projection of the j-th row onto the the ¢; ball with radius A and applying
this to each row indeed results in the closest matrix in terms of the absolute sum matrix
norm, which is just the extension of the ¢; norm on the whole matrix. In convolutional

layers the formula can be modified similarly by only modifying some kernel weights

1

k.. \) = k.
7TS< R) s (1 w) %)

(4.52)

With these formulas the weights can be efficiently normalized with just a slight overhead

after each gradient descent step.

In the case of p = 2, just like computing the Lipschitz constant, the normalization of
a layer is more complicated. It can be achieved by clipping the singular values in the

singular value decomposition W = UXVT:

(W, \) =UX'VT (4.53)
with

5 = max(A, Xi) (4.54)

This is indeed the closest (w.r.t. the Frobenius norm) matrix with Lipschitz constant A.

To prove this (the proof is slightly modified from [43|), consider the identity

Wl|p =v/tr(WHW)
= /tr((USVE)H(USVH))
= /tr(VSHUHULVH)
\/tr(VETVH)

tr(SVHVEH)

(4.55)

This also means that the Frobenius norm is invariant under unitary transformations.
If W = UXV# is the singular value decomposition of W then ¥ = UHWYV. The

37

4.4 Lipschitz Normalization

minimization problem for the projection can now be written as

(W, \) = argmin ||W — W'||g

[[W/]l2<A

= argmin |[[UWV - U"W'V||r (4.56)
WYl <A '

= argmin ||¥ - UPW'V||p
[[UHWV][2<X

Finding 7z(W,) is equivalent to minimizing

X = argmin || — X||p (4.57)

[[X[2<A

The solution can then be computed with 7(W, \) = UX V. With the binomial formula

for norms induced by an inner product it follows that
12 = XI5 =517 — 2Re(3, X) + [|X][%
=213 - 2Re(tr (27 X)) + (|1 XI3
>[|3|f} — 2Re(tr (7)) + IS
= - 2|7
Since X and 3 have the same singular values and thus the same Lipschitz constant,
> would be a matrix closer to ¥ on the feasible set, unless X = 3. Because of this
we can suppose that X is already of diagonal form. Otherwise it would not be a valid

projection. Let ¢ and 6 be vectors consisting of the diagonal entries of the diagonal

matrices ¥ and 3 respectively. The minimization problem can, again, be rewritten as

o = argmin ||o — o’||5 (4.59)
l[lo"l]oo <A

because the spectral norm is the largest singular value. This is the euclidean projection

of o onto the oco-norm ball with radius A which can be achieved with the formula
d; = max(\, o;) (4.60)

Thus formula [4.54] gives the right projection with respect to the Frobenius norm.

Convolutional layers can be normalized by either building the singular value decompo-

38

4.5 Inherently Non-Expansive Networks

sition of the matrix representation or by doing a Fourier transformation of the filter
kernels. In both cases the clipping of the singular values will generally not result in a
convolution kernel of the same size as before. This thesis will use the variant with the
Fourier transformation. As explained in the previous subchapter, the singular values of
a convolutional layer can be computed by calculating the singular value decompositions

of matrices that correspond to the pixels of the layer input.

(9" (u))se = M o(F(u)ss)

Just as with fully connected layers above, the singular values can be clipped in order to
get a new matrix at that pixel. Since each matrix entry has a one-to-one correspondence
to a entry in the Fourier transform of the filter kernel, a normalized kernel can be
constructed by gathering the normalized matrix entries and transforming the result back
into the spacial domain. As mentioned above, in general this will not result in a kernel
of the same size. Inverse Fourier transformation and subsequent discarding of all values
outside of the original kernel dimensions will alter the singular values again so that it is
not clear if the network still has the right Lipschitz constant. Sedghi et al. |5] propose to
repeatedly perform singular value clipping in the frequency domain and restricting the
kernel size again. Since the set of Lipschitz continuous kernels with a specific constant
and the set of kernels of a specific size are convex, this iteration converges to a kernel in
the intersection of both sets. However, for the use case in this thesis this process turned
out to be not efficient and it was not feasible to repeat it after each gradient descent
step. For this reason a network architecture that exploits the convolution theorem and
directly learns the convolutional weights in the frequency domain will be used. This
way the kernel does not have to be inverse Fourier transformed and the layer is provably
Lipschitz continuous after a single singular value clipping. The network architecture will

be further explained in the following subchapter.

4.5 Inherently Non-Expansive Networks

It was already shown that some classes of functions like proximal operators are inher-
ently non-expansive. In this section a network architecture that is the composition
of non-expansive functions and is thus itself also non-expansive will be derived. This

architecture will be based on the wavelet shrinkage denoising algorithm [44].

39

4.5 Inherently Non-Expansive Networks

The wavelet transform, similar to the Fourier transform, is a linear operator that trans-
forms a signal into a new representation with respect to a orthonormal basis. In a

continuous setting the transform of a signal f is defined as

wosan) == [o (20 st (161)

¥ is called mother wavelet and generates a orthonormal system of basis functions
Win(r) = 229(22 — k) (4.62)

These are translated and scaled versions of the mother wavelet. The mother wavelet can

be any function 1 which satisfies
/ ()2t < oo (4.63)

In this thesis the Daubechies 4 tap wavelet [45] will be used, which is often used for
discrete wavelet transforms in signal processing. The Daubechies wavelets are orthogo-
nal which means that their associated wavelet transform is non-expansive. In case of a
discrete 2-dimensional image the wavelet transform can be interpreted as follows. The
image is high-pass filtered to yield three detail images for horizontal, vertical and diag-
onal details. Furthermore, the image is low-pass filtered and downscaled. The original
image can be reconstructed from this downsampled image and the three detail images.
This procedure can be applied recursively to the downscaled image and results in a
pyramid-like structure. Figure [£.4] shows the wavelet transform with recursion depth 2
of the Lenna test image. The top right, bottom left and bottom right quadrants show the
vertical, horizontal and diagonal detail images respectively, while the top left quadrant
contains the low-passed image, which by itself has again been decomposed into three
detail and one downscaled image. A lot of noise can be seen in the detail images in the
lowest pyramid level. The idea of wavelet denoising is to apply a threshold function to
the detail images in order to suppress the noise. One possible threshold function is given
by simply setting the input to zero if the absolute value of the signal is smaller than a

given value. This is called hard thresholding and can be seen in Figure [4.5

" x, if |z| > A
Az) = (4.64)
0, otherwise

40

4.5 Inherently Non-Expansive Networks

Figure 4.4: Example of of a wavelet pyramid

-3 -2 -1 0 1 2 3
x

Figure 4.5: Hard thresholding with A =1

41

4.5 Inherently Non-Expansive Networks

2, -
1, -
=
70 |
-1l .
9] .
| | | | | | |

-3 -2 -1 0 1 2 3
T

Figure 4.6: Soft thresholding with A =1

Hard thresholding is not non-expansive. Consider, for example, ;1 = 2 and x5 = 3.
Then

In Figure[4.5|it can be seen that there are non-continuities at £\ which means that hard
thresholding is not Lipschitz continuous at all. For this reason instead soft thresholding

[46,147] will be used, which is also known as the shrinkage operatmﬂ It is defined as

r—\ifz > A
Sx(r) =z + N\ ifr< -\ (4.66)

0, otherwise

If x is a vector this formula should be seen element-wise. The graph of the function in
Figure shows that there are no discontinuities and the largest slope of the function
is 1. Another way to see that the shrinkage operator is always non-expansive is to see

that S, is a proximal operator:
Prox yjz| = Si(x) (4.67)

Proofs for this can be found in [46] and [47]. Since the wavelet transform and its inverse
are non-expansive themselves it is now clear that the whole denoising algorithm is non-

expansive when using the shrinkage operator.

4sometimes also soft shrinkage

42

4.5 Inherently Non-Expansive Networks

The choice of the parameter A depends on the noise level and can be made using different
heuristics [48]. In this thesis a learning based approach to learn a a different parameter A
for each level in the wavelet domain is used. This leads to a simple network architecture

that is inherently non-expansive.

43

5 Numerical Experiments

First, all tried network architectures for image denoising in our experiments will be
explained. After that, the trained networks will be used to solve inverse image problems
as explained in Chapter [3.1} The results will be compared to the results of DnCNN and

usual energy minimization methods.

5.1 Network Architectures

This thesis will conduct experiments on enforcing Lipschitz continuity on three different
network architectures for image denoising. First, an attempt to normalize an archi-
tecture that is very similar to DnCNN was made. Because this architecture did not
give satisfying results another architecture which learns convolutional weights directly
in the frequency domain was tried. Lastly, a wavelet architecture which is non-expansive
by definition and does not require any further Lipschitz normalization during training
was tested. The following sections will explain especially the last two architectures in
more detail. Each network will be trained on grayscale images corrupted with gaussian
noise with standard deviation 0.098 [} The training and test data were taken from the
PyTorch implementation of DnCNNP| For testing, "Set12", which was also used in the
DnCNN paper, was used. All networks were trained using the Adam optimizer |34].

Because of the ease of implementation, the first experiments were done by trying to
enforce Lipschitz continuity with respect to the l-norm. As seen in chapter [.3] the
Lipschitz constant with respect to the 1-norm can be computed by simply taking the

maximum row sum of the weight matrices. First tests were conducted with a simpler

!This assumes that pixel values have a range from 0 to 1. The convention in the DnCNN paper
assumes values from 0 to 255 and thus a standard deviation of 25 in the their paper is equivalent to
0.098 ~ 25/255 here, which explains the odd value used here

Zhttps://github.com/SaoYan/DnCNN-PyTorch

44

https://github.com/SaoYan/DnCNN-PyTorch

5.1 Network Architectures

version of DnCNN which only has 3 convolutional layers (1 layer that increases the
number of channels to 64, 1 layer that keeps the number of channels the same and the
output layer which decreased the number of channels back to 1). To keep it simple, and
because it was not really necessary for such a shallow network, contrary to DnCNN, no
batch normalization was used. Because of the statements in chapter also no a skip

connection was used and instead denoised image was learned directly.

Without Lipschitz normalization, the training resulted in a performance of an average
PSNR of 27.6 dB on the test setﬂ However, with 1-norm Lipschitz normalization, as
described as in Chapter [1.4] the network achieved much worse results. Using (W, 1)
as proposed in [4] to normalize the layer weights after each gradient descent step, which
means to divide all weights by the Lipschitz constant of the layer if it is greater than
1, resulted in a PSNR of approximately 10 dB on both training and test data. With
the less aggressive projection wg(W,1) a PSNR of 20.5 dB could be achieved, which is

around the same PSNR value as the identity function would get for that noise level.

As discussed in Chapter and in [5], Lipschitz-normalizing convolutional layers with
respect to the euclidean norm by singular value clipping does not result in convolutional
kernels of the same size as before the normalization. Setting the kernel values outside
of the original size to zero changes the Lipschitz constant of the layer again. The
algorithm proposed by [5] to circumvent this is to iterate the following two steps until

convergence:
1. Clip the singular values of the convolutional layer in frequency domain

2. Transform the kernel back to the spatial domain. Since the kernel now has most

likely the wrong size, discard all values outside of the original kernel’s size

Multiple iterations of this are required in order to converge to a kernel that has the
right size and also the right Lipschitz constant. Tests showed that the computation
time for this procedure was too long to be feasible to do after each gradient descent
step. Only doing the projection each n-th optimization step, for example each 100th
step, completely destroyed the training process up to that step. For these reasons it was
decided to instead use a architecture which directly learns coefficients in the frequency

domain and computes convolutions as multiplications with the Fourier transformed input

3The full DnCNN achieves a PSNR of 30.436 for our noise level according to [2]

45

5.1 Network Architectures

by using the convolution theorem. This can be interpreted as a convolution with a kernel
of learnable size [37]. In the following this architecture will be referred to as FFTNet.

FFTNet consists of Fourier convolutional layers. Their weights are n, many blocks
of complex numbers of dimension w X h X n;, where w and h are the input image
dimensions, n; is the amount of input channels and n, is the amount of output channels
of the layer. This means that each of those blocks has the same dimension as the Fourier
transformed input volume which makes element-wise multiplication possible. Separate
learnable weights for the real and imaginary part were used. Like in formula [4.23] the
output of the element-wise multiplication of the input image and each block of weights
is then summed up in channel direction. The result is a single channel of the output
volume. Since there are n, weight blocks, this results is an output volume of dimension
w X h X n,. Note that unlike DnCNN, which only consists of usual convolutional layers
and can thus take any image size as input, the width and height of the input to a Fourier

convolutional layer is fixed.

An open question is how to introduce activation functions to a layer like this. If there
was an activation function that could be applied in the frequency domain, a forward
and inverse Fourier transform per layer could be saved. There have been proposals to
compute the ReLU as a convolution in the frequency domain [49]. However, because
it is a lot more complicated to implement, and slight performance optimizations are
not the focus of this thesis, it was instead decided to compute the ReLLU in the spatial
domain after an inverse Fourier transform. The result of the inverse Fourier transform
is in general a complex number. Trabelsi et al. [50] tested different extensions of the
ReLU to complex numbers and got the best results by just applying it separately to the
real and imaginary part of the input 1

CReLU(a + ib) = ReLU(a) + i ReLU(b) (5.1)

To make the computation of the singular values for the Lipschitz normalization as fast
as possible, FFTNet only consists of two such Fourier convolutional layers. The first
layer increases the number of channels to 40 and the second layer decreases them again
to 1. The imaginary part is discarded for the output and the size of input images is
fixed to 80 x 80. This means that the Lipschitz normalization requires the singular

value decomposition of 80 - 80 many 40 x 1 matrices for the first and 1 x 40 matrices for

4The name CReLU is taken from |50]

46

5.1 Network Architectures

the second layer (see equation 4.38]). These are row and column vectors whose singular
values can easily be calculated by taking their norm. If v # 0 is a column vector, its

singular value decomposition is UV with [

U:,l = °)
[[v]]2
[[v]]2
0
Y=| . |and (5.2)
0
V=1

In the case of column vectors like this, their singular value is just their euclidean norm
and clipping that value is equivalent to normalizing the vector in case that the norm is
greater than 1. For row vectors the reasoning is analogous. This can be efficiently done

after each gradient descent step.

With Lipschitz normalization, the FFTNet achieved an average PSNR of 26.41 on the
Set12 test set. Since the network can only take 80 x 80 images as input, the images in
Set12 were split into overlapping patches. Even though this result is worse than DnCNN
without normalization, it is a lot better than the results of normalizing the small DnCNN
variant with respect to the 1-norm earlier in this chapter. Figure [5.1| shows the absolute
values of the 40 weight maps in the first layer of the trained normalized network. As
seen by the visible structure around the vertical and horizontal axes, the network learned

more than a simple gaussian low-pass filter.

The last architecture is the inherently non-expansive wavelet based network described
in chapter and will be referred to as WaveletNet. It consists of a discrete wavelet
transform of recursion depth 3 and subsequent application of the soft shrinkage operator
on the detail images. The soft shrinkage operator has a different learnable parameter

for each wavelet level, so the whole network only has 3 learnable parameters.

Table shows the training results of all tested architectures in a single place. Since
normalizing the small DnCNN architecture did not show competitive performance com-

pared to FF'TNet and WaveletNet, it will not be included in the following experiments.

®Note that only the first column of U matters here. The other columns would have to be orthogonal
to v in order to be a valid singular value decomposition.

47

5.1 Network Architectures

Figure 5.1: Absolute value of the weights of the first layer of normalized FFTNet

Network Architecture (Normalization Scheme) | PSNR|dB]
DnCNN (not normalized) 30.44
small DnCNN (not normalized) 27.63
small DnCNN (¢;-normalized with) 10.03
small DnCNN (¢;-normalized with 7g) 20.51
FFTNet (not normalized) 27.31
FFTNet (¢;-normalized) 26.41
WaveletNet 25.46

Table 5.1: Training results for different networks and different Lipschitz normalization
schemes. WaveletNet is inherently non-expansive w.r.t. the euclidean norm

48

5.2 Image Reconstruction

Conv Layer ¢; | Conv Layer ¢, | Batchnorm ¢; /{5
7.00 16.06 -
125.50 28.55 0.25
104.17 17.02 0.60
97.48 12.84 0.57
96.73 12.91 0.57
99.60 14.71 0.49
97.56 13.85 0.48
101.17 13.86 0.59
101.56 14.61 0.46
102.11 13.27 0.56
97.94 14.42 0.39
96.44 13.62 0.54
95.37 14.42 0.46
99.24 14.98 0.58
95.63 13.11 0.44
93.51 14.13 0.14
18.88 1.34 -

Table 5.2: Layer-wise Lipschitz constants of DnCNN with respect to 1-norm and 2-norm.

Table shows the layer-wise Lipschitz constants of the full, unnormalized DnCNN
architecture. The product of all values in the ¢; or the ¢ columns yields a Lipschitz
constant for the whole network. Note that the Lipschitz constant of batch normalization
layers is the same with respect to the 1-norm and 2-norm, so they share a column. This
results in a ¢; Lipschitz constant of approximately 7.6-10%% and a ¢, constant of 4.3-10'3.
In comparison, the ¢y Lipschitz constant of the unnormalized FFTNet is only 73.62
(first layer approx. 19.97 and second layer 3.69), which shows the problem of exploding

Lipschitz constants for very deep networks because of its multiplicativity.

5.2 Image Reconstruction

The image reconstruction task used to conduct the experiments is gaussian deblurring.
Images u were corrupted with gaussian blur of standard deviation 1. To this blurred
image gaussian noise with standard deviation 0.02 is added, so that the final image is of
the form

f=Au+n (5.3)

49

5.2 Image Reconstruction

Figure 5.2: Best deblurred images for each algorithm out of 100 repetitions with ran-
dom starting images ug. (a) original image (b) blurred image (c) classical
energy minimization (d) DnCNN (e) FETNet (not normalized) (f) FFTNet
(normalized) (g) WaveletNet

where A is the blur operator and n is the noise. The task is to recover u as closely as
possible when only f and A is known.

Five different approaches are used to solve the problem. First, a classical energy mini-
mization approach is employed by calculating

. 1
@ = argmin §||Au — f||§ + a||Dul| guper (5.4)

with gradient descent. The other four approaches calculate a fixed point iteration of the

form

W = (1 — a)(u® — TAT (AP — f)) + aG(uF) (5.5)

where G is either DnCNN, normalized /unnormalized FFTNet or WaveletNet. The left
side
ub — T AT (AuF — f) (5.6)

is the same as a gradient descent step on ||Au — f||3 (see Chapter [3.3).

The deblurring experiment was conducted on 12 different images. Since FFTNet can

20

5.2 Image Reconstruction

Method PSNR[D]
Cameraman | House | Peppers | Starfish | Butterfly | Plane | Bird | Lena | Barbara | Boat | Man | Couple
min 28.63 29.96 28.87 27.53 26.46 28.12 | 26.23 | 29.21 28.98 29.02 | 29.18 | 28.81
Encrgy Min max 29.12 30.52 29.27 27.88 26.90 28.54 | 26.67 | 29.69 29.33 29.46 | 29.52 | 29.23
: mean 28.85 30.25 29.04 27.70 26.64 28.34 | 26.50 | 29.46 29.88 | 29.25 | 29.34 | 29.02
std. dev. 0.088 0.100 0.093 0.068 0.078 0.075 | 0.079 | 0.086 0.080 0.078 | 0.078 | 0.083
min 26.20 22.16 25.48 24.96 21.76 28.12 | 26.79 | 29.63 28.91 28.94 | 19.28 | 24.37
DnCNN max 29.39 30.77 29.34 27.93 27.48 28.44 | 27.58 | 30.10 29.31 29.28 | 29.28 | 29.04
mean 29.15 30.31 | 29.05 27.65 26.98 28.28 | 27.19 | 29.88 | 29.10 29.11 | 29.01 | 28.65
std. dev. 0.415 1.020 0.594 0.455 0.994 0.070 | 0.140 | 0.097 0.081 0.074 | 1.038 | 0.855
min 28.47 29.43 28.16 27.00 26.12 27.71 | 26.18 | 28.70 28.43 28.71 | 28.78 | 28.64
FFTNet (not normalized) max 29.08 30.20 28.5_%0 27.40 26.63 28.27 | 26.63 | 29.20 28.93 29.25 | 29.28 | 29.04
mean 28.65 29.84 28.51 27.22 26.31 28.04 | 26.42 | 28.95 28.67 28.95 | 29.04 | 28.80
std. dev. 0.101 0.143 0.106 0.084 0.097 0.130 | 0.103 | 0.105 0.108 0.111 | 0.098 | 0.092
min 27.94 29.03 28.13 27.33 26.04 27.64 | 25.92 | 28.54 28.36 28.61 | 28.52 | 28.38
FFTNet max 28.28 29.64 28.55 27.66 26.34 28.11 | 26.22 | 28.93 28.77 29.04 | 28.88 | 28.82
mean 28.09 29.32 28.35 27.49 26.20 27.87 | 26.08 | 28.74 28.57 28.82 | 28.73 | 28.56
std. dev. 0.074 0.100 0.086 0.070 0.059 0.077 | 0.061 | 0.082 0.102 0.083 | 0.088 | 0.091
min 25.17 25.68 26.64 25.46 23.98 25.46 | 24.07 | 26.59 26.01 26.33 | 26.48 | 26.58
WaveletNet max 25.63 26.05 27.10 25.83 24.29 25.84 | 24.32 | 27.00 26.45 26.75 | 27.01 | 27.04
mean 25.52 25.92 26.93 25.68 24.15 25.65 | 24.19 | 26.83 26.24 26.57 | 26.79 | 26.90
std. dev. 0.065 0.072 0.080 0.068 0.061 0.066 | 0.061 | 0.078 0.072 0.074 | 0.092 | 0.073

Table 5.3: Deblurring results on different images. Every experiment was repeated 100
times with different random starting points uy and different random gaussian
noise.

only take 80 x 80 images as input due to its architecture, the test images were all scaled
to that size. Before the experiments a grid search was used to find the best values for
the hyperparameters a and 7. For the classical energy minimization approach o = 50
and for DnCNN, FFTNet and WaveletNet o« = 0.15 was chosen. As expected, a value
for a that is too small results in a image that is too noisy because the influence of the
regularizer becomes too small. All methods use a learning rate of 7 = 1.9 and each
experiment was repeated 100 times with different randomly initialized starting vectors
ug for the fixed point iterations and random noise n. The best deblurred images out of all
100 repetitions can be seen in Figure and statistical results for each experiment can
be found in Table [5.3] The performance of WaveletNet is around 2 dB worse compared
to the other methods in all experiments. The classical energy minimization approach
and DnCNN have similar performance, where each one of the two is better than the
other on some images. Both the normalized and unnormalized versions of FFTNet show
similar results and are slightly worse than DnCNN in terms of the maximal PSNR. The
normalized FFTNet has lower standard deviation than the unnormalized FFTNet on all
test images. Interestingly, the variance of the results is much higher for DnCNN than
for all other algorithms, with the difference of the highest and lowest PSNR spanning
as far as 8 dB on the House test image, setting it even lower than the lowest result of
WaveletNet. Comparatively, the variances of the other algorithms are close to zero. Since
the starting vectors and the noise of the blurred image are the only factors that change

between the repetitions of each experiment, this suggests that the DnCNN algorithm

51

5.2 Image Reconstruction

Original Blurred Deblurred

Figure 5.3: Failed deblurring by the DnCNN algorithm. The deblurred image has a
PSNR of 24.25 dB

somehow fails for some configurations. Figure [5.3] shows such a case. Even though the
fixed point iteration converges, the resulting image shows a clear artifact near the right

image border.

To explore this effect, the experiment was repeated for different values of o between
0.2 and 0.8. The results in Figure [5.4 show that the standard deviation of the PSNR
(vertical bars) decreases with greater values of «, however the mean performance also
decreases, making DnCNN worse than all other methods if similar standard deviation
is required. It is not clear if this behavior is caused by the expansiveness of DnCNN
since there is no full-sized and normalized DnCNN for comparison. Greater o actually
increases the influence of the network in the fixed point iteration (see equation , SO
that a possible correlation between expansiveness and higher standard deviation would

more likely show a greater standard deviation for greater o and not the opposite.

Instead, it is also possible that the failures depend on the starting vector ug. To test
this, the experiments were repeated with a fixed initialization uy = 0, so that the only
difference between repetitions is the random noise n. From the results in Table it
can be seen that now the standard deviation of the method with DnCNN is similar to
that of the other methods and there are no more outliers. Interestingly, the standard
deviations of the other algorithms did not improve much, which leads to the conclusion

that the DnCNN method is more sensitive to its starting vector.

Even with this improvement, the deblurring performance of DnCNN from Meinhardt et

al. , which was better than the energy minimization approach, could not be replicated

92

5.2 Image Reconstruction

31 A

30 A

29 -

28 1

PSNR[dB]

27

26 A

25 A

24 T T T T T T T
0.2 0.3 0.4 0.5 0.6 0.7 0.8

a

Figure 5.4: Different DnCNN deblurring results on the House image for varying «

Method PSNRIdB]
Cameraman | House | Peppers | Starfish | Butterfly | Plane | Bird | Lena | Barbara | Boat | Man | Couple
min 28.70 29.98 28.87 27.58 26.49 28.21 | 26.30 | 29.24 28.99 29.02 | 29.15 | 28.82
Energy Min max 29.09 30.67 | 29.32 27.85 26.83 28.58 | 26.69 | 29.67 29.39 29.45 | 29.55 | 29.19
- mean 28.88 30.25 29.07 27.73 26.63 28.35 | 26.50 | 29.46 | 29.19 | 29.24 | 29.36 | 29.03
std. dev. 0.080 0.111 0.092 0.061 0.068 0.081 | 0.074 | 0.092 0.084 0.080 | 0.085 | 0.080
min 28.83 30.14 28.95 27.59 26.89 28.04 | 26.65 | 29.57 28.86 28.93 | 28.92 | 28.64
DnCNN max 29.25 30.56 29.34 27.86 27.25 28.37 | 26.97 | 29.99 29.30 29.30 | 29.29 | 28.97
mean 29.01 30.32 | 29.14 27.72 27.05 28.22 | 26.83 | 29.74 | 29.07 29.10 | 29.13 | 28.81
std. dev. 0.080 0.095 0.085 0.052 0.068 0.068 | 0.070 | 0.084 0.086 0.072 | 0.079 | 0.066
min 28.55 29.69 28.35 27.21 26.19 27.99 | 26.31 | 28.78 28.53 28.87 | 28.94 | 28.72
FFTNet (not normalized) max 28.96 30.28 28.85 27.50 26.59 28.27 | 26.76 | 29.34 29.01 29.34 | 29.31 | 29.03
mean 28.74 29.94 28.63 27.34 26.43 28.14 | 26.52 | 29.09 28.81 29.14 | 29.12 | 28.87
std. dev. 0.084 0.108 0.095 0.067 0.077 0.062 | 0.083 | 0.104 0.095 0.086 | 0.079 | 0.076
min 27.90 29.06 28.19 27.27 26.03 27.73 | 25.88 | 28.59 28.44 28.61 | 28.54 | 28.45
FFTNet max 28.23 29.54 28.66 27.70 26.35 28.08 | 26.22 | 28.96 28.75 29.10 | 28.92 | 28.78
mean 28.09 29.33 28.42 27.51 26.17 27.91 | 26.05 | 28.78 28.60 28.85 | 28.76 | 28.60
std. dev. 0.065 0.091 0.092 0.075 0.062 0.073 | 0.063 | 0.083 0.077 0.086 | 0.072 | 0.070
min 25.55 25.98 26.99 25.68 24.18 25.72 | 24.19 | 26.91 26.28 26.62 | 26.78 | 26.91
WaveletNet max 25.78 26.46 27.30 25.96 24.41 25.98 | 24.47 | 27.24 26.58 26.95 | 27.16 | 27.18
mean 25.69 26.15 27.13 25.86 24.29 25.86 | 24.35 | 27.04 26.44 26.78 | 26.97 | 27.06
std. dev. 0.049 0.071 0.066 0.056 0.048 0.056 | 0.049 | 0.066 0.063 0.066 | 0.065 | 0.059

Table 5.4: Deblurring results on different images. Every experiment was repeated 100
times with uy = 0 and different random gaussian noise.

93

5.2 Image Reconstruction

Method Running Time | Number of iterations
Energy Min 384 ms £ 5.4 ms 71.3 £ 1.0
DnCNN 107 ms £ 3.83 ms 19.9 + 2.3
FFTNet (not normalized) | 113 ms + 4.4 ms 274 + 3.2
FFTNet (normalized) 91 ms =+ 1.06 ms 225 £ 1.1
WaveletNet 221 ms £+ 4.78 ms 222+19

Table 5.5: Mean running time of deblurring methods and number of iterations until
convergence (uo = 0). Values have the format (mean + standard deviation).
All algorithms ran on a Nvidia RTX 2080 GPU.

by the method in this thesis. A reason for this could be that they used a different
underlying algorithm (the Pock-Chambolle primal-dual algorithm [51]) in which the
regularizer was replaced by DnCNN, while this thesis uses a modified algorithm
because of its easier convergence analysis. They also trained their DnCNN on a noise
level of ¢ = 0.02 as opposed to o = 25/255 ~ 0.098 here. Furthermore, different

hyperparameters like the learning rate or the convergence threshold could be at fault.

Directly comparing the unnormalized and normalized versions of FFTNet gives a more
interesting insight in the convergence properties because they only differ in their Lip-
schitz constant. Table compares the running time and number of iterations until
convergence of all methods. The fixed point iteration is considered to have converged if
the mean squared difference between two iterations is smaller than 1078, The method
with the normalized FFTNet does not only converge faster but the number of iterations
also has a much smaller variance than for the unnormalized FFTNet. This leads to an
average decrease in running time of approximately 19%. The much larger increase in
running time compared to the number of iterations for DnCNN and WaveletNet can
be explained by their network architecture. A forward pass in general takes longer to

compute than it is the case for FFTNet.

A comparison for different « values for the two FFTNet methods can be seen in Figure
[b.4] Interestingly, for large « the performance of the unnormalized FFTNet method
degraded drastically and even resulted in NaNs. At the same time the number of itera-
tions exploded and had to be capped at 1000. In comparison, the normalized FFTNet
method converged for all o and gave reasonable results, even though the PSNR became

also lower for larger «.

o4

5.2 Image Reconstruction

301 —— FFTNet 10001 —— FFTNet
—— FFTNet (not normalized) —— FFTNet (not normalized)
29 A
800 A
28 A
7y 2 600
S o
z 27 8
[i
& =400
26 A
25 A 200
24 A
O -
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
a a

Figure 5.5: Comparison of normalized and unnormalized FFTNet for varying a on the
House test image. For o > 0.75, the calculation of the PSNR of the result
with the unnormalized FFTNet resulted in a NaN because the MSE was too
large. The maximum number of iterations was set to 1000.

95

6 Conclusions

This thesis succeeded in the goal to train a non-expansive denoising network. It gave a
framework to compute an upper bound for the Lipschitz constant of a neural network
consisting of common layer types and use that bound to effectively normalize it. How-
ever, with FFTNet, a special network architecture was required in order to achieve even
close to competitive denoising performance. Even though this network had worse results
than state-of-the-art denoisers, it has the desirable theoretical property that using it as a
regularizer in energy minimization approach for image reconstruction problems produces

a provably convergent fixed point iteration.

The deblurring experiments showed that, when using the same network architecture, this
fixed point iteration converges faster if the network is non-expansive. Moreover, there
were even hyperparameters for which the algorithm with the expansive network com-
pletely failed while the algorithm with the non-expansive network converged. In security
critical applications, in which it is not acceptable to ever get invalid results, it might be

feasible to sacrifice some image reconstruction quality for provable convergence.

There are many possible directions for future work. In this thesis no assumption on
the domain of the neural network was made, i.e. it was assumed that the input was an
arbitrary vector in R™. It is likely that the Lipschitz constant of the network restricted
to the set of valid images with pixel values in the interval [0, 1] is lower than the Lips-
chitz constant of the same network on the full domain. Normalizing with this Lipschitz
constant is less restrictive on the network weights and should thus lead to better per-
formance. Another assumption that was made is that every layer of the network has
to be non-expansive in order for the whole network to be non-expansive, because the
Lipschitz constant of a function composition is the product of the Lipschitz constant
of the individual functions. However, instead of requiring all factors to be 1, a less re-
strictive condition is for the product of all factors to be 1, i.e. some layers can have a

larger Lipschitz constant if at the same time other layers have a smaller one. Since it is

o6

6 Conclusions

not clear which layer should get which constant, it is preferable to make the per-layer

Lipschitz constant learnable.

The computed Lipschitz constants for networks in this thesis were only upper bounds
for the best Lipschitz constants. In combination with activation functions, especially
the ReLU which potentially maps large parts of its input to zero, it is possible that the
best Lipschitz constant of a network is much smaller than those upper bounds. This
could be especially useful for very deep networks, as could be seen by the exploding
upper bounds for the Lipschitz constants of DnCNN. Future work could develop tighter

bounds for these special cases.

The wavelet-based inherently non-expansive network in this thesis showed results that
were not competitive with the other approaches. Since it only consisted of a single
wavelet denoising layer, it could be explored how to make deeper architectures, that
still remain inherently non-expansive, in order to increase the expressiveness of the

network.

Lastly, a different approach by Gouk et al. [52] for enforcing the Lipschitz constant could
be considered. In that work, the Lipschitz constant of a layer is approximated by the
maximal gradient with respect to the input over the training set. This approximation,
which Gouk et al. call gain, is in general smaller than the true best Lipschitz constant
and thus using it for the normalization schemes in this thesis would not make the network
non-expansive. However, since this approach incorporates the distribution of real images
by using a training set to calculate the gain, it could be interesting to compare a network
normalized by using gain and a network normalized by the method in this thesis in terms
of their performance as regularizers in image reconstruction tasks and their respective

convergence properties.

o7

Bibliography

[1]

5]

[6]

17l

Tim Meinhardt, Michael Moller, Caner Hazirbas, and Daniel Cremers. Learn-
ing proximal operators: Using denoising networks for regularizing inverse imaging
problems. In The IEEE International Conference on Computer Vision (ICCV), Oct
2017.

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond
a Gaussian denoiser: Residual learning of deep CNN for image denoising. [FEE
Transactions on Image Processing, 26(7):3142-3155, 2017.

Yuichi Yoshida and Takeru Miyato. Spectral Norm Regularization for Improving
the Generalizability of Deep Learning. arXiv e-prints, page arXiv:1705.10941, May
2017.

Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael Cree. Regulari-
sation of Neural Networks by Enforcing Lipschitz Continuity. pre-print, page
arXiv:1804.04368, Apr 2018.

Hanie Sedghi, Vineet Gupta, and Philip M. Long. The singular values of convolu-

tional layers. In International Conference on Learning Representations, 2019.

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-Margin Training:
Scalable Certification of Perturbation Invariance for Deep Neural Networks. In
Advances in Neural Information Processing Systems 31, pages 6542-6551. Curran
Associates, Inc., 2018.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral
normalization for generative adversarial networks. In International Conference on
Learning Representations (ICLR), 2018.

Gene H. Golub and Chares F. Van Loan. Matriz Computations. The Johns Hopkins
University Press, third edition, 1996.

o8

Bibliography

19]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

John M. Lee. Introduction to Smooth Manifolds. Springer, 2003.

Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based
noise removal algorithms. In Proceedings of the Eleventh Annual International Con-
ference of the Center for Nonlinear Studies on Experimental Mathematics : Com-
putational Issues in Nonlinear Science: Computational Issues in Nonlinear Science,
pages 259-268, New York, NY, USA, 1992. Elsevier North-Holland, Inc.

W. Robert Mann. Mean value methods in iteration. In Proceedings of the American
Mathematical Society, 1953.

M. A. Krasnosel’skii. Two remarks on the method of successive approximations. In
Uspekhi Mat. Nauk (Russian), volume 10, pages 123-127, 1955.

Ernest Ryu and Stephen Boyd. A primer on monotone operator methods survey.
Applied and computational mathematics, 15:3—43, 01 2016.

Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in
Optimization, 1(3), 2013.

M. Burger, A. Sawatzky, and G. Steidl. First Order Algorithms in Variational
Image Processing, pages 345-407. Springer International Publishing, Cham, 2016.

Peter J. Huber. Robust estimation of a location parameter. Ann. Math. Statist.,
35(1):73-101, 03 1964.

M. T. McCann, K. H. Jin, and M. Unser. Convolutional neural networks for inverse
problems in imaging: A review. IEEFE Signal Processing Magazine, 34(6):85-95,
Nov 2017.

Li Xu, Jimmy SJ Ren, Ce Liu, and Jiaya Jia. Deep convolutional neural network
for image deconvolution. In Advances in Neural Information Processing Systems
27, pages 1790-1798. Curran Associates, Inc., 2014.

K. Zhang, W. Zuo, and L. Zhang. Ffdnet: Toward a fast and flexible solution for
cnn-based image denoising. IEEE Transactions on Image Processing, 27(9):4608—
4622, Sep. 2018.

Junyuan Xie, Linli Xu, and Enhong Chen. Image denoising and inpainting with
deep neural networks. In Advances in Neural Information Processing Systems 25,
pages 341-349. Curran Associates, Inc., 2012.

99

Bibliography

21]

[22]

23]

24]

[25]

27]

28]

[29]

[30]

Rolf Kohler, Christian Schuler, Bernhard Scholkopf, and Stefan Harmeling. Mask-
specific inpainting with deep neural networks. pages 523-534, 09 2014.

Raymond A. Yeh, Chen Chen, Teck Yian Lim, Alexander G. Schwing, Mark
Hasegawa-Johnson, and Minh N. Do. Semantic Image Inpainting with Deep Gen-
erative Models. arXiv e-prints, page arXiv:1607.07539, Jul 2016.

M. Richart, J. Visca, and J. Baliosian. Image colorization with neural networks. In
2017 Workshop of Computer Vision (WVC), pages 55-60, Oct 2017.

J. H. Rick Chang, Chun-Liang Li, Barnabés Poczos, B. V. K. Vijaya Kumar, and
Aswin C. Sankaranarayanan. One network to solve them all — solving linear inverse

problems using deep projection models. arXiv preprint arXiw:1703.09912, 2017.

Felix Heide, Markus Steinberger, Yun-Ta Tsai, Mushfiqur Rouf, Dawid Pajak, Dik-
pal Reddy, Orazio Gallo, Jing Liu, Wolfgang Heidrich, Karen Egiazarian, Jan
Kautz, and Kari Pulli. Flexisp: A flexible camera image processing framework.

ACM Trans. Graph., 33(6):231:1-231:13, November 2014.

S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg. Plug-and-play priors
for model based reconstruction. In 2013 IEEFE Global Conference on Signal and
Information Processing, pages 945-948, Dec 2013.

A. Buades, B. Coll, and J. . Morel. A non-local algorithm for image denoising. In
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR’05), volume 2, pages 60-65 vol. 2, June 2005.

K. Dabov, A. Foi, and K. Egiazarian. Video denoising by sparse 3d transform-
domain collaborative filtering. In 2007 15th Furopean Signal Processing Conference,
pages 145-149, Sep. 2007.

Michael Moeller and Daniel Cremers. Image Denoising—Old and New, pages 63-91.
Springer International Publishing, Cham, 2018.

S. Sreehari, S. V. Venkatakrishnan, B. Wohlberg, G. T. Buzzard, L. F. Drummy,
J. P. Simmons, and C. A. Bouman. Plug-and-play priors for bright field electron to-
mography and sparse interpolation. IEEE Transactions on Computational Imaging,
2(4):408-423, Dec 2016.

60

Bibliography

[31] S. H. Chan, X. Wang, and O. A. Elgendy. Plug-and-play admm for image restora-
tion: Fixed-point convergence and applications. IEEE Transactions on Computa-

tional Imaging, 3(1):84-98, March 2017.

[32] Xavier Glorot, Antoine Bordes, and Y Bengio. Deep sparse rectifier neural networks.
Journal of Machine Learning Research, 15, 01 2010.

[33] Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. On the
importance of initialization and momentum in deep learning. In International Con-
ference on Machine Learning (ICML), 2013.

[34] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In ICLR, 2015.

[35] Yann LeCun, Patrick Haffner, Leon Bottou, and Yoshua Bengio. Object Recognition
with Gradient-Based Learning, pages 319-345. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1999.

[36] Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[37] Harry Pratt, Bryan M. Williams, Frans Coenen, and Yalin Zheng. Fenn: Fourier
convolutional neural networks. In ECML/PKDD, 2017.

[38] Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In International Conference on
Machine Learning (ICML), pages 448-456, 2015.

[39] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770-778, June 2016.

[40] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Har-
nessing Adversarial Examples. arXiv e-prints, page arXiv:1412.6572, Dec 2014.

[41] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep
learning. arXiv e-prints, page arXiv:1603.07285, Mar 2016.

[42] Patrick L. Combettes and Jean-Christophe Pesquet. Deep Neural Network Struc-
tures Solving Variational Inequalities. arXiv e-prints, page arXiv:1808.07526, Aug
2018.

61

http://www.deeplearningbook.org

Bibliography

43

[44]

[45]

|46]

[47]

48]

[49]

[50]

[51]

[52]

S. Lefkimmiatis, J. P. Ward, and M. Unser. Hessian schatten-norm regularization

for linear inverse problems. [EEE Transactions on Image Processing, 22(5):1873—

1888, May 2013.

C. Taswell. The what, how, and why of wavelet shrinkage denoising. Computing in
Science Engineering, 2(3):12-19, May 2000.

Ingrid Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1992.

Patrick Combettes and Valérie R. Wajs. Signal recovery by proximal forward-
backward splitting. SIAM Journal on Multiscale Modeling and Simulation, 4, 01
2005.

I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint. Communications on Pure and
Applied Mathematics, 57(11):1413-1457, 2004.

G. P. Nason. Choice of the Threshold Parameter in Wavelet Function Estimation,
pages 261-280. Springer New York, New York, NY, 1995.

A. Vasilyev. Cnn optimizations for embedded systems and fft. Stanford, Thesis,
2015.

Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy Serdyuk, Sandeep Subra-
manian, Joao Felipe Santos, Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio,

and Christopher J Pal. Deep complex networks. In International Conference on
Learning Representations (ICLR), 2018.

Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for
convex problems with applications to imaging. Journal of Mathematical Imaging
and Vision, 40(1):120-145, May 2011.

Henry Gouk, Bernhard Pfahringer, Eibe Frank, and Michael Cree. MaxGain: Reg-
ularisation of Neural Networks by Constraining Activation Magnitudes. arXiv e-
prints, page arXiv:1804.05965, Apr 2018.

62

	Introduction
	Mathematical Foundations
	Image Reconstruction Problems
	Energy Minimization Methods
	Learning-based Approaches
	Hybrid Methods

	Training of Lipschitz Continuous Networks
	Recalling Neural Networks
	Lipschitz Continuity of DnCNN
	Layer-wise Lipschitz Constant Computation
	Lipschitz Normalization
	Inherently Non-Expansive Networks

	Numerical Experiments
	Network Architectures
	Image Reconstruction

	Conclusions

