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Temporal Blending for Adaptive SPH
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Computer Graphics Group, Institute for Vision and Graphics (IVG), University of Siegen, Germany

Figure 1: Two �uids �ooding a valley with a salt diffusion (from white to blue) in our interactive and fully GPU-based PCISPH,
shown for two different time-steps. The particle resolution is smoothly doubled around the village by using blend-sets (orange).

Abstract
In this paper we introduce a fast and consistent Smoothed Particle Hydrodynamics (SPH) technique which is
suitable for convection-diffusion simulations of incompressible �uids. We apply our temporal blending technique
to reduce the number of particles in the simulation while smoothly changing quantity �elds. Our approach greatly
reduces the error introduced in the pressure term when changing particle con�gurations. Compared to other
methods, this enables larger integration time-steps in the transition phase. Our implementation is fully GPU-based
in order to take advantage of the parallel nature of particle simulations.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

Fluid simulations are important in many graphics appli-
cations such as physically based animation and interac-
tive computer graphics. Compared to grid-based (Eule-
rian) techniques, particle-based (Lagrangian) approaches

like Smoothed Particle Hydrodynamics (SPH), automati-
cally include conservation of mass and are very suitable to
handle free surfaces. SPH, as introduced by Gingold and
Monaghan [GM77], models the dynamics of �uids based
on particle motions applying forces to ensure the Navier-
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Stokes equations. Various attempts have been made to op-
timize SPH by improving the accuracy and/or reducing the
computational costs. Regarding accuracy, SPH for incom-
pressible �uids has been introduced to Computer Graphics
by Becker and Teschner [BT07]. Different SPH parame-
ters are crucial for the performance of an SPH simulation:
for example, using small particle support radii [MCG03]
minimizes the neighbourhood complexity. Dynamically ad-
justing the integration time step based on the Courant-
Friedrich-Levy (CFL) condition shortens the overall sim-
ulation time [IAGT10]. Another intuitive idea to speed-up
simulations is to reduce the overall particle count by using
adaptive particle sizes [APKG07] or two co-existing reso-
lution levels [SG11]. Additionally, Predictive-Corrective In-
compressible SPH (PCISPH) [SP09] enable large integra-
tion time-steps for incompressible �uids. Last but not least,
graphics processing units (GPUs) are able to exploit the
highly parallel nature of SPH simulations [KC05].

The overall goal of this paper is to provide a consistent
and adaptive SPH simulation which allows large integra-
tion time-steps. For this purpose, we introduce a feature-
speci�c adaptation of the number of particles in combination
with adaptive time-steps and small support radii by using
prediction-correction steps. An instantaneous replacement
of particle con�gurations introduces a signi�cant change in
the pressure term, which leads to small time-steps when CFL
conditions are dynamically enforced. Therefore, we apply a
temporal blending scheme to smooth the error in the pres-
sure term. In detail, our approach incorporates the following
contributions:

� a novel approach for a consistent adaptive SPH using a
temporal blending of quantities which enables large time-
steps, and

� a scheme to estimate the blending step size based on a
predicted error in the pressure term enabling an error-
dependent blending time, and,

� a solely GPU-based implementation for incompressible
SPH �uids with support for non-uniform particle sizes and
in combination with adaptive time-steps.

Compared to prior approaches, our temporal blending proves
to be very robust in terms of the pressure error. As such, we
believe that it is possible to integrate the proposed method
into any other SPH scenario [LD09, SB12] where a smooth
and consistent transition between particle sets is required.

In the remainder of the paper, we �rst discuss related work
(Sec.2), and introduce relevant aspects of our adaptive SPH
(Sec.3), including a motivation for our temporal blending
approach as presented in Sec.4-7. Implementation details
are given in Sec.8. In Sec.9 we discuss advantages and lim-
itations of our sampling and in Sec.10 we conclude our ap-
proach.

2. Related Work

Since the introduction of SPH [GM77, Luc77], many im-
provements on computation speed have been introduced. We
group them according to the complexity of the underlying
physics, the data-parallelism, and the adaption of particle
sets. For further details, we refer to the surveys from Mon-
aghan [Mon05] and Koumoutsakos et al. [KCR08].

Physics: Desbrun and Cani [DC96] introduced SPH to
the computer graphics community. Based on their work,
Müller et al. [MCG03] presented a set of smoothing ker-
nels with compact support in order to simulate �uids at
interactive rates. Becker and Teschner [BT07] employed
Tait's equation of state to enforce incompressibility at the
cost of small time-steps. By introducing a prediction cor-
rection loop, Solenthaler and Pajarola [SP09] enabled larger
integration time-steps for incompressible �uids. Ihmsen et
al. [IAGT10] extended their predictive-corrective approach
by globally adapting the integration time-step after each sim-
ulation step. Additionally, they have improved the bound-
ary handling as proposed by Becker et al. [BTT09] by in-
cluding boundary particles in the pressure update loop. Re-
cently, Goswami and Pajarola [GP11] have introduced an ap-
proximation mechanism by deactivating nearly passive par-
ticles, however violating Newton's action-reaction principle.
Beside convective �ux, diffusion for SPH has been intro-
duced to computer graphics by Stora et al. [SAC� 99] to ani-
mate lava �ows which then has been extended by Müller et
al. [MSKG05] to simulate �uid-�uid interactions. How-
ever, for SPH the laplacian is better approximated by us-
ing an integral approximation [CM99] as used by Kristof et
al. [KBKS09] to simulate the transport of sediments.

Data-Parallelism and Neighbourhood Complexity: Kolb
and Cuntz [KC05] and Kipfer et al. [KSW04] were the �rst
who took advantage of the data parallel nature of particle
systems on programmable graphics hardware. The �rst gath-
ering approach on the GPU has been published by Harada et
al. [HKK07], incorporating a bucket structure on the GPU to
accelerate neighbourhood searches. Green [Gre09] has taken
this idea one step further by sorting particles according to
their current location in a �xed size access-grid. Goswami et
al. [GSSP10] further speed up their access structure by
utilizing shared memory on the GPU and by applying z-
indexing. Ihmsen et al. [IABT11] utilize a compact hashing
on Multicore CPUs and make use of the temporal coherence
of particle structures. Pelfrey and House [PH10], maintain
neighbour lists for each particle in order to avoid unneces-
sary memory reads which at the same time simplify SPH
operations.

Adaptivity: Reducing the overall particle count either glob-
ally or locally is very appealing in order to improve simula-
tion ef�ciency, because for SPH the overall computational
cost increases linearly with the number of particles. Cot-

c 2012 The Author(s)
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tet et al. [CKS00] divide the �uid domain into several ar-
eas with different resolutions. Unfortunately, their system
depends on a frequent global remeshing of particles onto
a regular grid [CPK02] which distracts from the adaptive
character of Lagrangian systems. Lastiwka et al. [LQB05]
relate a particle's support radius to the estimated volume af-
ter a local sampling using large support radii. Feldmann and
Bonet [FB07] utilize a non-linear minimization of the local
density error. However, both methods are too slow for inter-
active simulations. Instead, in computer graphics simple re-
placement schemes are used to enable fast simulations which
cause high approximation errors. Desbrun and Cani [DC99]
and Zhang et al. [DC99, ZSP08] employed the differen-
tial form of the continuity equation in order to avoid high
local changes of mass-density due to split or merge oper-
ations. With the differential form, errors are accumulated
over time which leads to severe instabilities. As �rst pub-
lished by Becker and Teschner [BT07], the summation ap-
proach is much more stable for larger time steps. Adams et
al. [APKG07] determine valid positions for re�ned particles
and stop sampling in case of large pressure errors. Keiser et
al. [KAG� 06] avoid a direct communication between particle
levels by introducing the concept of virtual particles which
however introduce errors to quantity �elds when they turn
into real particles. Recently, Solenthaler and Gross [SG11]
have proposed a particle simulation with coexisting resolu-
tion levels which enables the simulation to quadruple reso-
lution. Unfortunately, the proposed feedback forces are not
physically motivated and do not prevent divergence between
resolution levels. Divergent simulations may lead to conser-
vation problems especially in case of unbounded free surface
scenarios or diffusion simulations, such as shown in Fig.1. In
contrast, in our approach, particle levels interact using stan-
dard SPH rules enabling consistent multi-level convection-
diffusion simulations.

3. Adaptive SPH

In this section, we �rst describe basics for SPH-based
convection-diffusion simulations (Sec.3.1) and then give
insight into the identi�cation of high resolution regions
(Sec.3.2) as required for adaptive SPH systems (Sec.3.3),
as shown in Fig.2. In Sec.3.4 we discuss major challenges
in realizing an adaptive sampling while giving reasons for
our proposed blending of quantities, as described in Sec.4.

3.1. SPH Physics

In Lagrangian systems, particles represent mass points
which move with the �ow �eld. In SPH, physical quantities
are computed by summing up the contributions of particles
x j in the neighbourhood of the sampling positionx:

Q(x) = å
j

Q j (x) = å
j

Q j v j Wj (x); (1)

Neighbour
Search

Adaptive
Refinement

Time
IntegrationSPH

Figure 2: A typical simulation loop for adaptive SPH sys-
tems. Our temporal blending easily integrates into SPH and
uses an error estimation during the time-integration step in
order to smooth out errors, caused by an adaptive sampling.

where v j = mj
r j

is a particle's volume, de�ned via a par-
ticle's massmi and a particle's densityr i , and Wj (x) =
W(jx � x j j;h j ) is a radial symmetric kernel function with
small compact support radiush j [MCG03]. If Eq. (1) is eval-
uated at a particle positionxi we will use the short notation
Wi j = Wj (xi). Consequently, in summation form, the density
for a particlei is computed by [Mon92]:

r i = å
j

mj Wi j : (2)

In our case, total mass transport of a soluble substance, like
salt in Fig.1, is modelled via convective and diffusive trans-
port. For �uids, the convective part or change of velocity is
described by the Navier-Stokes equations:

¶vi

¶t
=

1
mi

[Fp
i + Fµ

i + Fs
i + Fe

i ]:

Fe
i is an external force, e.g. gravity. For the viscous force

Fµ
i and the surface tension forceFs

i we refer to Monaghan
[Mon05] and Becker and Teschner [BT07], respectively.
However, a particle's pressure forceFp

i can be derived from
symmetrized gradient approximations as described by Mon-
aghan [Mon05]:

Fp
i = � mi å

j6= i
mj (

pi

r 2
i

+
p j

r 2
j
)ÑWi j ; (3)

where pi is the pressure of a particle which for PCISPH
is adapted iteratively by utilizing the following linear de-
pendency between density and pressure:pi = b(r i � r 0),
where r 0 is the rest density of a �uid andb is precom-
puted over an optimal neighbourhood [SP09]. Additionally,
an isotropic diffusion simulates how fast a soluble substance
is propagated in a �uid. According to Cleary and Mon-
aghan [CM99], a change of concentrationsc of a soluble
substance is computed by

¶ci

¶t
= D å

j6= i

mj

r j r i
(ci � c j )jÑWi j j: (4)

HereD is the diffusivity constant, which controls how fast
substances are propagated in a �uid. Please note that by sep-
aratingc from m, we assume that the soluble substance has
no in�uence on a �uid's density.

c 2012 The Author(s)
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Figure 3: Mixing of coffee and cream in a Utah Teapot,
shown for t=2 and t=6. Blend-sets (bottom) are used to dy-
namically adapt to the convective and diffusive �ux (top).

3.2. High-Resolution Regions

An adaptive mechanism shifts computational resources to
regions of interest. High-resolution regions are either prede-
�ned (see Fig.1) or are changed dynamically, as dictated by
the �ow. Dynamic regions are de�ned via the �uid's surface
in combination with areas of high diffusive �ux, as visible
at the contact-line between the two �uids shown in Fig.3.
Accordingly, particlesxi belong to a high-resolution area as
long as one of the following conditions holds true:

jå
j

v jÑWi j j > es or jå
j

v j (ci � c j )ÑWi j j > ec;

wherees;ec are user de�ned thresholds for the volume gra-
dient (see also Mueller et al. [MSKG05]) and the con-
centration gradient, respectively. However, many other re-
sampling criteria exist throughout the literature [SZP07].
Please note that similar to Adams et al. [APKG07] we leave
an intermediate area of particles which are not re�ned in or-
der to avoid split-merge �uctuations.

3.3. Non-Uniform Support Radii

Once high-resolution regions are identi�ed, simple sam-
pling operators, such as shown in Fig.6, are used to re-
�ne a local particle set, aiming for a good performance.
An adaptive sampling uses particles with non-uniform sup-
port radiihi and massesmi depending on their current level
l i = 0;1;2; :::; lmax:

hi = s
�

mi

r 0

� 1
3

; mi = 2l i m0; (5)

wherem0 is the reference mass for level zero particles and
s � 1:3 in order to conserve a �uid's volume [Mon05]. How-
ever, in non-uniform particle systems, particles may either
contribute to particles of their level only [KAG� 06, SG11],
or may exchange information with all neighbour particles di-
rectly [APKG07]. In the latter case, which we use due to its
simplicity, the in�uence of neighbouring particles needs to
be averaged in order to symmetrize contributions [Mon92]:

Wi j = W(jxi � x j j;
hi + h j

2
):

Alternative averaging operators [DC99] may be applied as
well. However, high resolution regions require smaller in-
tegration time-steps in order to secure simulation stability.
According to the Courant-Friedrich-Levy (CFL) condition,
the maximum time-step for a single particlei is de�ned by

Dti = min(l v
hi

jvi j
; l F

s
hi

jFi j
); (6)

where l v = 0:4 and l F = 0:25 according to Mon-
aghan [Mon92]. The overall simulation speed then depends
on the minimum over all individual time-steps, as described
for example by Ihmsen et al. [IAGT10] for PCISPH.

3.4. Challenges of an Adaptive Sampling

Adaptive SPH systems re�ne particles globally [CKS00] or
locally [FB07]. In case of free surface �ows, local sampling
operations have to minimize a local error function in order
to preserve a quantity �eldQ(x) as good as possible:

EQ(x) = jQ(x) � Q� (x)j; (7)

whereQ� (x) is the result of the approximation. Lagrange
multipliers [FB07] and iterative solvers are required in or-
der to conserve the total amount of quantities and to account
for non-negativity constraints [LB95]. Instead, in Computer
Graphics, simple and fast sampling patterns are used. For ex-
ample, in high-resolution regions, particles of levell split to
N child particles of levell � log2(N), or vice versa merge
to a single particle of levell + 1 in low resolution re-
gions. In general, such operators do not include any neigh-
bouring particles to minimizeEQ(x), do not preserve the
overall regular particle structure and consequently, approx-
imate the old quantity �eld with larger errors as shown in
Fig. 4. Differentials in SPH are quite sensitive to such ir-
regular particle structures and �eld discontinuities. Solen-
thaler and Gross [SG11] have utilized an impulse-based
transition for high-level boundary particles turning into real
particles. However, their method is applicable only if two
resolution levels are allowed to coexist, possibly leading
to divergence problems. In consistent systems, communi-
cation between particles of different smoothing radii in-
creases the error as well [BOT01]. In general, this error can
be reduced by avoiding a direct communication between
levels as proposed by Keiser et al. [KAG� 06] or by us-
ing a 1 : 2 replacement structure as has been proposed by

c 2012 The Author(s)
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(a) Ground Truth (b) Non Continuous (c) Error-Independent (d) Error-Dependent

Figure 4: 4(a) visualizes the pressure distribution for the scene shown in Fig.9 after 1.5 seconds of simulation time. In4(b)
high pressure is introduced due to an abrupt merging of 60k particles asutilized by [APKG07] in the context of PCISPH,
leading to an unstable simulation in case the number of merge operations is not reduced as shown later in Fig.9. In 4(c) our
error-independent linear blending function is applied which gives a resultclose to the original pressure �eld. However, an error
estimation in combination with our linear blending preserves the overall pressure distribution much better, as shown in4(d).

Adams et al. [APKG07]. Still, large pressure forces are in-
troduced due to a non-optimized sampling, strong particle
overlaps, and small compact smoothing kernels. By apply-
ing the CFL condition in each step, such forces dramatically
decrease the integration time in order to preserve simula-
tion stability. Even worse, in the context of PCISPH such
forces may trigger a shock handling mechanism as described
by Ihmsen et al. [IAGT10]. Instead, our temporal blending
(Sec.4) smooths out these errors over time by using an error-
dependent transition (Sec.7) via our local quantity blend-
ing (Sec.5-6). Thus, we allow adaptive SPH systems to use
large time steps in combination with small smoothing ker-
nels which are required for a fast and consistent simulations.

4. Temporal Blending

In order to smooth sampling errors introduced by sampling
operators, we propose a blending approach to smoothly in-
terpolate between two interchangeable �uid representations
over time as shown in Fig.5. Even if a blending between
multiple representations of an object is a well known con-
cept in computer-graphics, we will transfer the idea into the
context of SPH-based �uid simulation. With a blending be-
tween two global particle sets, the SPH-based summation
interpolant changes to

Q(x) = b å
j2H

Q j (x) + ( 1� b) å
j2L

Q j (x)

= b QH (x) + ( 1� b) QL(x): (8)

Here, a low-resolution particle setL and a high-resolution
particle set H represent two interchangeableblend-
domains. Both corresponding quantity �eldsQH (x) and
QL(x) are smoothly blended with respect to ablend-weight
b 2 [0;1]. Over time,b increases from zero to one or de-
creases from one to zero which depends on the required res-
olution. As a result, particles of one blend-domain smoothly

replace the particles in their complementary blend-domain,
their so-calledblend-partners. Instead of just re�ning one
global �uid volume, we blend between manylocal blend-
sets (i.e. sub-volumes of the �uid) simultaneously as de-
scribed in the following section.

(a) Non-Continuous (b) Continuous

Figure 5: Instead of a non-continuous sampling5(a) our
blending5(b) smoothly replaces old particles (blue) by a
new particle set (orange) with respect to a blend-weight b(t).

5. Concept of Blend-Sets

We introduce the concept of blend-sets, i.e. local �uid vol-
umes with adapting particle representations, to enable lo-
cal blending operations. Each blend-sets therefore consists
of two particle sets, a low resolution particle setLs (blue)
and a high resolution particle setHs (orange). The transition
between these local particle-sets is controlled by a blend-
weight bs 2 [0;1]. Due to multiple co-existing blend-sets,
the SPH system needs to handle several individually blend-
ing particles together with non blending particles over time
as shown in Fig.6. Accordingly, the SPH summation with
support for blend-sets is de�ned by

Q(x) = å
j =2S

Q j (x) + å
s

(bs å
j2Hs

Q j (x)+( 1� bs) å
j2Ls

Q j (x)) ;

(9)
whereS=

S
sf Hs [ Lsg includes all blending particles.

c 2012 The Author(s)
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(a) (b)

Figure 6: In 6(a) particles are split to 8 child particles in
order to double resolution close to the pillars. With blend-
sets, new (black) particles are smoothly blended in over time
until they fully contribute (white) to neighbouring particles
while the contribution from old particles is reduced. In6(b)
particles are replaced by two child particles three times in
order to double resolution. Due to blending and proper ini-
tialization the result is independent from the used pattern.

However, similarly to the global blending function as de-
�ned by Eq. (8), we need to compute �ow quantities sepa-
rately in both blend-domains of a blend-set. Consequently,
we have to rearrange Eq. (9) with respect to a single blend-
set r. Therefore, we de�ne the contribution from particles
which do not belong tor (grey particles in Fig.7) as

F r (x) = å
j =2S

Q j (x) + å
s6= r

(bs å
j2Hs

Q j (x)+( 1� bs) å
j2Ls

Q j (x)) :

By adding this contribution to the contribution from particles
in r we can reformulate the SPH summation to

Q(x) = F r (x) + br å
j2Hr

Q j (x)+ ( 1� br ) å
j2Lr

Q j (x)

= br (F r (x)+ å
j2Hr

Q j (x)) + ( 1� br ) (F r (x)+ å
j2Lr

Q j (x))

= br QHr (x) + ( 1� br ) QLr (x); (10)

whereQHr (x) and QLr (x) represent the quantity �elds of
the high-resolution blend-domain and low-resolution blend-
domain with respect to a single blend-setr. However, in
practice we cannot directly use Eq. (10) to compute mass
�ux, for reasons described in the following section.

6. Application of Blend-Sets

The separation of resolution levels as described in the previ-
ous section becomes useful when evaluating �ow quantities
for blend-sets. However, because blend-partners strongly
overlap, a force computation in a particle's complementary
blend-domain would lead to strong repulsion forces. That is

(a) SPH (b) Interpolation (c) Blending

Figure 7: Particles i in a blend-set r blend (7(c)) between a
quantity which they evaluate via SPH in their blend-domain
(7(a)) and a quantity which they interpolate in their comple-
mentary blend-domain (7(b)), as shown for i2 Hr (top row)
and i2 Lr (bottom row). In both steps, neighbouring blend-
sets s (dark grey) contribute to a particle i with respect to
their blend-weights bs, as indicated by the black arrows.

why in practice, a particlei in a blend-setr utilizes three
sequential steps to resemble Eq. (10), as shown in Fig.7:

a) SPH: At �rst, particle i computes its �ow quantities via
SPH in its blend-domain only, i.e.Qi = QHr (xi) for i 2
Hr andQi = QLr (xi) for i 2 Lr . During this step, blend-
domains are treated independently (see Sec.6.1).

b) Interpolation : Subsequently, particlei interpolates �ow
quantities in its complementary blend-domain (see
Sec. 6.2), resulting in Q̂i = Q̂Hr (xi) for i 2 Lr or in
Q̂i = Q̂Lr (xi) for i 2 Hr . However, an SPH summation
would result in an underestimation of �ow �elds as the
interpolation pointxi does not coincide with any particle
positionx j in i's complementary blend-domain. Instead,
we apply a corrected interpolation [BK02]:

Q̂(x) = å
j

Q jv jŴj (x); Ŵj (x) =
Wj (x)

å j v jWj (x)
; (11)

which results in a better approximation of �ow �elds.
c) Blending: Finally, both quantities are blended with re-

spect to the blend-weightsbr in order to synchronize �ow
dynamics between blend-domains:

Qi  

(
br Qi + ( 1� br ) Q̂i i 2 Hr

br Q̂i + ( 1� br ) Qi i 2 Lr :
(12)

With such a blending of quantities, the system enables a
smooth transition between blend-partners over time.

Instead of grouping particles according to their blend-sets
we rather employ pair-wise conditions in order to evaluate
�ow quantities.

c 2012 The Author(s)
c 2012 The Eurographics Association and Blackwell PublishingLtd.
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6.1. SPH-based Flux Computation per Blend-Domain

As a �rst step, a particlei in blend-setr evaluates �ow quan-
tities in its blend-domain. According to Eq. (10) neighbour-
ing particlesj, which belong to the same blend-domain, con-
tribute to i with respect to their blend-weights. Instead of
gathering contributions from all blend-sets separately, we
introduce conditional pair-wise contributionsbi j into the
SPH summation:

Qi = å
j

bi j Q j v j Wi j : (13)

As shown in Fig.7(a), a contribution from a neighbouring
particle j to particlei under consideration is then de�ned as

bi j =

8
>>><

>>>:

0 j 2 Hs ^ i 2 Ls _ j 2 Ls ^ i 2 Hs

bs j 2 Hs ^ r 6= s

1� bs j 2 Ls ^ r 6= s

1 otherwise:

Please note that pair-wise contributionsbi j are also applied
during �ux computation for particlesi which do not belong
to any blend-set. For such non-blending particles we simply
setr 6= s, asHr [ Lr = /0.

With such pair-wise contributions the SPH system avoids
instantaneous changes in the density �eld (see Eq. (2)) which
otherwise would lead to strong pressure forces:

r i = å
j

bi j mj Wi j : (14)

Such conditional blend-weights do not change the way spa-
tial derivatives are computed. For example pressure forces
(see Eq. (3)) are evaluated by

Fp
i = � mi å

j6= i
bi j mj (

pi

r 2
i

+
p j

r 2
j
) ÑWi j : (15)

As blend weights are employed as particle inherent proper-
ties, they easily apply to all other kinds of symmetrized gra-
dient approximations as well. Similarily, the diffusive �ux
(see Eq. (4)) with support for blend-sets is computed by

¶
¶t

ci = D å
j6= i

bi j
mj

r j r i
(ci � c j )jÑWi j j: (16)

With the described SPH summation, neighbouring particles
smoothly adapt to new particle con�gurations. However,
blend-partners need to synchronize their quantities by utiliz-
ing an interpolation in their complementary blend-domain.

6.2. Interpolation of Flow Quantities between
Blend-Domains

In each step of the simulation, a blending of quantities re-
duces the divergence between blend-domains and smooths
sampling errors between blend-partners. As described previ-
ously, particles utilize Eq. (11) in order to interpolate quan-
tities in the complementary blend-domain as standard SPH
does not even preserve constant functions. Consequently, in

combination with pair-wise contributions, a particlei in a
blend-setr interpolates �ow quantities by

Q̂i =
å j b̂i j Q j v j Wi j

å j b̂i j v j Wi j
: (17)

As shown in Fig.7(b), the contributions from neighbouring
particlesj to particlei under consideration is de�ned as

b̂i j =

8
>>><

>>>:

0 i; j 2 Ls _ i; j 2 Hs

bs j 2 Hs ^ r 6= s

1� bs j 2 Ls ^ r 6= s

1 otherwise:

Please note that Eq. (17) is used for pure interpolation only,
e.g. to interpolate velocitieŝvi or densitiesr̂ i . We also
slightly increase the interpolation radius byk = 1:25 in or-
der to get a good trade-off between the smoothing of quantity
�elds and the divergence between blend-partners:

Wi j = W(jxi � x j j;k
hi + h j

2
):

However, in rare cases, blend-partners may still diverge,
e.g. due to contact with sharp boundaries. In cases where
jxi � x j j > k hi+ h j

2 , we average the velocity among blend-
partners in order to let them stick together. On the one hand,
this effectively reduces their dynamics, but on the other
hand, an average operation avoids non-physically motivated
bonding mechanisms.

Even if Eq. (11) results in a better approximation of quan-
tity �elds [ She68] we neither preserve linear nor preserve
angular momentum. As the introduced damping of �ow dy-
namics is not noticeable we do not apply a normalization
of the interpolated density and velocity values. However, we
must conserve the total amount of a soluble substancec. For-
tunately, due to isotropic diffusion, the concentration pro�le
is rather homogeneous. As concentrations are given with re-
spect to a particle's mass, we interpolate concentrations by

ĉi = å
j

c j ; (18)

where in this case the contributing particle setj is restricted
to blend-partners only, i.e.j 2 Hs^ i 2 Ls_ j 2 Ls^ i 2 Hs.
With the proposed blending of quantities, the system is able
to smoothly exchange particle sets over time.

7. Blending Duration

After a blend-set has been created via a split or a merge
operation, it goes through two different phases: in the ini-
tialization phase, newly created particles are passively ad-
vected while their initial position is improved, as described
in Sec.7.2. In the subsequent transition phase, blend-sets
smoothly update their blend-weights in order to enable a sta-
ble transition from one time-step to the next. The in�uence

c 2012 The Author(s)
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Figure 8: Top-view (left) of the "Valley"-scene and the es-
timated sampling-errors (right). Newly created (blue) par-
ticles may introduce large blend-errors (red), due to strong
overlaps with neighbouring particles.

of new particles increases from zero to one, and simultane-
ously, decreases from one to zero for old particles as mod-
elled by the following piecewise linear blending function:

br (t + Dt) = br (t) +

(
Dbr (t) Lr splitted

� Dbr (t) Hr merged;
(19)

whereDbr depends on the local sampling error (see Sec.7.1).
As soon as old particles do not contribute to their neighbour-
ing particles anymore, i.e.br = 1 in case of a split orbr = 0
in case of a merge, they are removed from the system.

7.1. Error Estimation

In order to make the transition as smooth as possible, we
increment blend-weights with respect to local sampling er-
rors. For this purpose, we measure the error which is in-
troduced into a quantity �eld by updating all blend-weights
by a global blend-incrementDb 2]0;1], which according to
Eq. (7) and Eq. (9) yields

EQ(x) = j Q(x) � Q� (x) j

= å
s

(bs å
j2Hs

Q j (x) + ( 1� bs) å
j2Ls

Q j (x))

� å
s

((bs+ Db) å
j2Hs

Q j (x) + ( 1� (bs+ Db)) å
j2Ls

Q j (x))

= å
s

(Db å
j2Hs

Q j (x) + Db å
j2Ls

Q j (x))

= Db å
j2S

Q j (x) :

By assuming a static particle neighbourhood we are then
able to measure the sensitivity of a quantity �eld with re-
spect to a change of blend-weights. Even if we can compute
sampling errors for all quantity �elds, we only measure the
error which is introduced into the density �eld by

Er (x) = Db å
j2S

mj Wj (x); (20)

which in our examples is most important to ensure stability.

In each time step, one could iteratively adjustDb in or-
der to stay below a maximum user de�ned errorEr ;max.
However, by assuming a linear dependency between blend-
weights and the sampling error, we instead apply only a sin-
gle estimation step. At �rst, all particles evaluate the density
error at their locationsx j , resulting inEr ; j (see Fig.8). Dur-
ing this step we setDb = Dbmax = Dt=Tmin where the mini-
mum blending timeTmin is de�ned by the user. Afterwards,
a blend-set computes its weight increment by using the max-
imum of all individual errors:

Dbr = Dbmax� (Dbmax� Dbmin) max
j

Er ; j

Er ;max
; (21)

whereDbmin = Dt=Tmax and the maximum user de�ned den-
sity error Er ;max = 0:06� r 0. Please note that with parti-
cles j we include non-blending neighbouring particles of
blend-setr as well. BothTmax and Tmin allow a user to
steer the blending either towards performance or towards
accuracy. For all our examples we have set the minimum
blending timeTmin = 40ms and the maximum blending time
Tmax = 200ms, which according to our experiments results
in a smooth transition. However, the blending duration can
be greatly reduced if particles are initialized properly.

7.2. Particle Initialization

As shown in Fig.8, newly created particles may introduce
larger errors thanEr ;max due to excessive overlaps with
neighbouring particles or due to a collision with rigid ob-
jects. Accordingly, we improve initial positions of new parti-
cles over a few simulation steps by using their pressure force
and keepingDbr = 0:

xi  xi + a
1
mi

Fp
i ; (22)

wherea is a user de�ned parameter. We restrict such pas-
sive particles not to move more thanhi away from the mass
center of their (active) blend-partners. Please note that such
impulses can only improve positions to a certain extent. A
merge or a split is therefore postponed if the error is still too
high, i.e.Er ;i > Er ;max.

8. PCISPH Implementation with Blend-Sets

In order to validate our approach, we have implemented
the state-of-the-art PCISPH algorithm in combination with
a diffusive �ux [CM99] on the GPU as shown in Alg.1.
For reasons of simplicity, we refer to the good related
work for a description of the predictive-corrective convec-
tion loop [SP09] in combination with an adaptive time-
stepping and proper boundary handling [IAGT10]. We have
highlighted our modi�cations to introduce blend-sets (or-
ange) and changes due to non-uniform support radii (green).

In each simulation step, particles blend their density, ve-
locity and concentrations between blend-domains as de-
scribed in Sec.6. Please note that we do not blend forces

c 2012 The Author(s)
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Algorithm 1 : Parallel PCISPH step with blend-sets.
Diffusive Flux

foreachparticle i in parallel do
compute densityr i (t) (Eq. (14))

foreachblending particle iin parallel do
interpolate densitŷr i (t) (Eq. (17))
blend densityr i (t) (Eq. (12))

foreachparticle i in parallel do
update concentrationci (t + Dt) (Eq. (16))

foreachblending particle iin parallel do
interpolate concentration ˆci (t + Dt) (Eq. (18))
blend concentrationci (t + Dt) (Eq. (12))

Convective Flux
foreachparticle i in parallel do

compute non-pressure forcesFµ+ e+ s
i (t)

initialize pressurepi (t) = 0
initialize pressure forceFp

i (t) = 0

while n < 3 do
foreachparticle i in parallel do

predict velocityv�
i (t + Dt)

predict positionx�
i (t + Dt)

foreachparticle i in parallel do
predict densityr �

i (t + Dt) (Eq. (14))

foreachblending particle iin parallel do
interpolate densitŷr �

i (t + Dt) (Eq. (17))
blend densityr �

i (t + Dt) (Eq. (12))

foreachparticle i in parallel do
compute pressure forceFp

i (t) (Eq. (15))
correct pressurepi (t) +=bl (r �

i (t + Dt) � r 0)

foreachparticle i in parallel do
update velocityvi (t + Dt)

foreachblending particle iin parallel do
interpolate velocitŷvi (t + Dt) (Eq. (17))
blend velocityvi (t + Dt) (Eq. (12))

Blend-Set Transition
foreachparticle i in parallel do

estimate blend errorEr ;i (t) (Eq. (20))

foreachblend-set rin parallel do
compute blend incrementDbr (t) (Eq.(21))
update blend-weightsbr (t + Dt) (Eq. (19))

foreachblending particle iin parallel do
if br (t) = 0_ br (t) = 1 : improve positionxi (t) (Eq. (22))

Time Integration
foreachparticle i in parallel do

update positionxi (t + Dt)
estimate time stepDti

adaptDt using parallel Min-Reduction overDti
recomputebl

between blend-partners. Instead, we synchronize the convec-
tive �ux by a blending of velocity values. At the end of each
simulation step, blend-sets then update their blend-weights
by predicting a sampling error as described in Sec.7. In con-
trast to the diffusive �ux, which is implemented in a straight-
forward fashion, the convective �ux is solved by adapting

particle pressures [SP09] over three iteration steps [IAGT10]
in order to enforce incompressibility. Note that according to
our measurements, it is suf�cient to apply a synchronization
of particle densities within the correction loop.

Since we utilize non-uniform particle sizes we compute
multiple constantsbl ; l = 0;1; ::; lmax to correct density
errors. Similar to Solenthaler and Pajarola, each is pre-
computed independently for a prototype particle of levell
with a �lled neighbourhood of level-l particles and is up-
dated each time the integration step-size changes. During
iteration, each particle then chooses its constantbl corre-
sponding to its levell i . As an adaptive spatial discretization
directly implies adaptive temporal discretization, particles
evaluate their maximum time-stepDti by using Eq. (6). The
integration time stepDt is then adapted globally by using a
parallel min-reduction over all individual time-steps.

Before �ux computation, particles are sorted according
to their current location in a regular access grid [Gre09],
whose size depends on the maximum support radiushmax
(see Fig.8). A sorting of particle data improves memory
coherence and allows the system to easily insert or re-
move particles at the end of the respective linear data arrays
which avoids memory fragmentations. Similar to Pelfrey and
House [PH10], we then use the access grid to set up neigh-
bour lists in which each particle stores references to all of its
neighbouring particles. We identify particles as neighbours
if their distance is smaller than their average support radius
which results in a symmetric visibility during �ux computa-
tions. On the one hand, such neighbour references increase
memory requirements and need to be updated each frame,
but on the other hand, SPH operations compute much faster
as global memory reads for non-contributing particles are
avoided. Furthermore, GPU kernels are easier to implement,
require less computing resources and avoid branch diver-
gences as they do not need an optimized neighbour search.

Scene "Valley" "Pillars" "Teapot"
Sim. Time [s] 75 21 35
Avg.Dt [ms] 2 2.5 2
Min #ptcls [k] 0-500 / 0-1000 210,500,700 / 0-470 / 0-1000

500,1000,1500
0-270* 380*,820*,1100* 0-700*

Comp. Time [min] 34 / 57 5.9,13.7,18.1 / 15.8 / 19.8
7.6,17.3,26.7

32.3* 9.9*,23.9*,31.3* 18.68*
Snapshot Fig.1 at 30s Fig.9 at 5s Fig.3 at 4.5s
#ptcls [k] 310[20]/ 635 500[40]/ 960 100[40]/ 128
Neighbours [ms] 10.1[0.7]/ 18.2 14.6[1.4]/ 26.5 5.2[2]/ 4.1
Diff. Flux [ms] 6.9[0.3]/ 12.4 9.67[1.1]/ 16.9 1.7[0.6]/ 2.1
Conv. Flux [ms] 27.1[3.3]/ 47.7 41.1[3.8]/ 65.7 11[2.5]/ 9.5
Blend. Trans. [ms] 5.1[5.1]/ 0 9[9]/ 0 1.7[1.7]/ 0
Time Int. [ms] 1.1[0]/ 2.1 1.9[0]/ 4 1.9[0]/ 0
Split/Merge [ms] 0.7[0]/ 0 1.7[0]/ 0 0.2[0]/ 0
Total [ms] 51[9.4]/ 80.4 78.1[15.3]/ 113.1 20.5[6.8]/ 16.6

Table 1: Timings of our adaptive / non-adaptive PCISPH.
The overhead due to blend-sets is highlighted in orange.
Overall timings for [APKG07] are marked with *.
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Figure 9: PCISPH simulation of two colliding �uid fronts after 5 seconds (top row). Only 160 k of the 960 k particles can be
stably merged with [APKG07] (second row). In contrast, our temporal blending (third row) achieves a 1.6x speed-up by halving
the particle count. Decreasing the particle resolution further to level lmax = 6 (last row) signi�cantly damps �ow dynamics.

9. Results and Discussion

We have tested our scenes on an Intel Dual-Core 2.66 GHz
with a NVidia GTX 580 Graphics Card with 1.5 GB VRAM.
In order to demonstrate the applicability of our temporal
blending we compare our method to the techniques from
Solenthaler and Pajarola [SP09], Müller et al. [MCG03]
and Adams et al. [APKG07] with particle numbers vary-
ing from 500 k particles to 1,5 M particles. Table1 gives an
overview over the simulation times for all presented scenes
and shows timings for the operations as presented in Alg.1.

Results are visualized by using our interactive volume ray-
casting [OKK10].

In the "Village" scene, Fig.1, the particle count increases
to one million particles over time in case of a non-adaptive
simulation and 500 k in case of a comparable adaptive SPH
within a �xed prede�ned high-resolution region around the
village. As shown in Fig.10, the workload scales linearly
with the number of particles in the predictive-corrective
loop. As expected, our adaptive method outperforms the
PCISPH [SP09] method by a factor of 1.6 and speeds-up

c 2012 The Author(s)
c 2012 The Eurographics Association and Blackwell PublishingLtd.



J. Orthmann & A. Kolb / Temporal Blending for Adaptive SPH

Figure 10: Due to the linear dependency between perfor-
mance and the number of particles, our temporal blending
speeds-up the simulation in Fig.1 by a factor 1.6 for PCISPH
[SP09] and by a factor of 1.3 for SPH [MCG03].

a compressible SPH simulation [MCG03], by a factor of 1.4
when the particle count is halved. As shown in the Teapot-
example (see Fig.3), in very complex �ow scenarios, the
number of blend-sets might be very high compared to the
overall particle count which results in no speed-up at all.
However, this will be the case for most adaptive simulations
due to fast changing resolution regions (which we recom-
pute every 20 frames). Still, resolution regions are in good
agreement with �ow dynamics.

By inserting particles abruptly [APKG07], high arti�cial
pressure forces are introduced, as visualized in Fig.4. In gen-
eral, very few particles can be stably merged, as shown in
Fig. 9. Even with a reduced number of re�nement opera-
tions, occasional high pressure forces occure and lead to a
�ickering of the integration time-step, as shown in Fig.11.
The system is not able to stably merge particles up to level
l = 6. In contrast, our temporal blending preserves the in-
tegration time-step while the number of particles can be
halved, even forlmax = 6 as shown in the last row of Fig.9.
Unfortunately, in case oflmax= 6, larger particles damp �ow
dynamics notably and the SPH system cannot gain much
speed-up, since the neighbour search then becomes a new
bottleneck. Furthermore, a non-uniform SPH in combination
with kernel averages [Mon92] is only stable for mass differ-
ences up to a factor of 10 [SP08] and non-uniform smoothing
radii introduce larger errors if they differ by more than a fac-
tor 2 between particle neighbours [BOT01]. In the future, we
would like to combine our blending of quantities with virtual
boundary particles as proposed by Keiser et al. [KAG� 06] in
order to enable larger resolution differences. However, the
presented temporal blending technique is independent from
the smoothing kernels and re�nement patterns. Please see
the accompanying video for further results and for visual im-
pressions of the presented scenes.

Figure 11: Time-step size and average density (in percent-
age of the rest density) for Fig.9. Even if the density pro�le
is preserved a stable non-continuous replacement (blue) re-
sults in a �ickering of the integration time-step (top) due to
occasional high pressure forces. In contrast, our method still
preserves the integration time-step, even for lmax = 6.

10. Conclusion

We have presented a novel temporal blending approach
which is capable of exchanging particle sets while main-
taining a consistent convection-diffusion simulation by us-
ing standard SPH rules only. Our temporal blending signif-
icantly reduces the in�uence of sampling errors while pre-
serving the integration time-step. Additionally, we have in-
troduced a scheme to control the blending time according
to a predicted error in the pressure term.In order to evaluate
the �exibility of our system, we have integrated our tem-
poral blending into the latest approaches presented in the
�eld of SPH-based �uid simulations. In combination with
our new blending approach, our fully GPU-based implemen-
tation achieves interactive frame-rates for up to a million of
particles.

Acknowledgments

This work is partially funded by the Siegener Graduate
School “Development of Integral Heterosensor Architec-
tures for the n-Dimensional (Bio)chemical Analysis”. Also,
we thank Maik Keller for his help in the video editing, the
reviewers for their valuable comments and suggestions and
the team of osgCompute for providing the GPU framework.

References

[APKG07] ADAMS B., PAULY M., KEISER R., GUIBAS L. J.:
Adaptively sampled particle �uids.ACM Trans. Graph. 26(July
2007).

[BK02] BONET J., KULASEGARAM S.: A simpli�ed approach
to enhance the performance of smooth particle hydrodynamics
methods.Appl. Math. Comput. 126, 2-3 (Mar. 2002), 133–155.

c 2012 The Author(s)
c 2012 The Eurographics Association and Blackwell PublishingLtd.



J. Orthmann & A. Kolb / Temporal Blending for Adaptive SPH

[BOT01] BØRVE S., OMANG M., TRULSEN J.: Regularized
smoothed particle hydrodynamics: A new approach to simulat-
ing magnetohydrodynamic shocks.The Astrophysical Journal
Supplement Series 561(2001).

[BT07] BECKER M., TESCHNERM.: Weakly compressible SPH
for free surface �ows. InProc. ACM SIGGRAPH/Eurographics
Symp. on Computer Animation (SCA)(2007), Eurographics As-
sociation, pp. 209–217.

[BTT09] BECKER M., TESSENDORFH., TESCHNERM.: Direct
forcing for lagrangian rigid-�uid coupling.IEEE Trans. Vis. &
Comput. Graph. 15, 3 (2009), 493–503.

[CKS00] COTTET G.-H., KOUMOUTSAKOS P., SALIHI M.
L. O.: Vortex methods with spatially varying cores.J. Comput.
Phys. 162(2000), 164–185.

[CM99] CLEARY P. W., MONAGHAN J. J.: Conduction mod-
elling using smoothed particle hydrodynamics.J. Comput.
Physics 148(1999), 227–264.

[CPK02] CHANIOTIS A. K., POULIKAKOS D., KOUMOUT-
SAKOS P.: Remeshed smoothed particle hydrodynamics for the
simulation of viscous and heat conducting �ows.J. Comput.
Physics 182(2002), 67–90.

[DC96] DESBRUN M., CANI M.-P.: Smoothed particles: A new
paradigm for animating highly deformable bodies. InEurograph-
ics Workshop on Computer Animation and Simulation (EGCAS)
(1996), Springer-Verlag, pp. 61–76.

[DC99] DESBRUN M., CANI M.-P.: Space-Time Adaptive Sim-
ulation of Highly Deformable Substances. Tech. Rep. 3829, IN-
RIA, 1999.

[FB07] FELDMAN J., BONET J.: Dynamic re�nement and bound-
ary contact forces in SPH with applications in �uid �ow prob-
lems.International Journal for Numerical Methods in Engineer-
ing 72, 3 (2007), 295–324.

[GM77] GINGOLD R., MONAGHAN J.: Smoothed particle hydro-
dynamics: theory and application to non-spherical stars.Notices
of the Royal Astronomical Society 181(1977), 375–389.

[GP11] GOSWAMI P., PAJAROLA R.: Time adaptive approximate
SPH. InProceedings Eurographics Workshop on Virtual Reality
Interaction and Physical Simulation(2011).

[Gre09] GREEN S.: Particle Simulation using CUDA. Tech. rep.,
NVIDIA, 2009.

[GSSP10] GOSWAMI P., SCHLEGEL P., SOLENTHALER B., PA-
JAROLA R.: Interactive SPH simulation and rendering on the
GPU. In Eurographics Symp. on Computer Animation (SCA)
(2010), pp. 55–64.

[HKK07] H ARADA T., KOSHIZUKA S., KAWAGUCHI Y.:
Smoothed particle hydrodynamics on GPUs.Proc. of Computer
Graphics International(2007), 63–70.

[IABT11] I HMSEN M., AKINCI N., BECKER M., TESCHNER
M.: A parallel sph implementation on multi-core cpus.Com-
put. Graph. Forum 30(2011), 99–112.

[IAGT10] I HMSEN M., AKINCI N., GISSLER M., TESCHNER
M.: Boundary handling and adaptive time-stepping for PCISPH.
In Proc. VRIPHYS(2010), pp. 79–88.

[KAG � 06] KEISER R., ADAMS B., GUIBAS L. J., DUTRÉ P.,
PAULY M.: Multiresolution Particle-Based Fluids. Tech. rep.,
ETH, 2006.

[KBKS09] KRISTOF P., BENES B., KRIVÁNEK J., STAVA O.:
Hydraulic erosion using smoothed particle hydrodynamics.Com-
put. Graph. Forum 28, 2 (2009), 219–228.

[KC05] KOLB A., CUNTZ N.: Dynamic particle coupling for

GPU-based �uid simulation. InProc. 18th Symposium on Simu-
lation Technique,(2005), pp. 722–727.

[KCR08] KOUMOUTSAKOS P., COTTET G.-H., ROSSINELLI
D.: Flow simulations using particles: bridging computer graphics
and cfd. InACM SIGGRAPH classes(2008), pp. 25:1–25:73.

[KSW04] KIPFERP., SEGAL M., WESTERMANN R.: Uber�ow:
a GPU-based particle engine. InProc. ACM SIGGRAPH/EURO-
GRAPHICS Conf. on Graphics Hardware(2004), pp. 115–122.

[LB95] L APENTA G., BRACKBILL J.: Control of the number of
particles in �uid and mhd particle in cell methods.Computer
Physics Communications 87, 1-2 (1995), 139 – 154.

[LD09] L ENAERTS T., DUTRÉ P.: Mixing �uids and granular
materials.Comput. Graph. Forum 28, 2 (2009), 213–218.

[LQB05] LASTIWKA M., QUINLAN N. J., BASA M.: Adaptive
particle distribution for smoothed particle hydrodynamics.In-
ternational Journal for Numerical Methods in Fluids 46, 10-11
(2005), 1403–1409.

[Luc77] LUCY L. B.: A numerical approach to the testing of the
�ssion hypothesis.Astronomical Journal 82(1977).

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-
based �uid simulation for interactive applications. InProc. ACM
SIGGRAPH/Eurographics Sym. Computer Animation (SCA)
(2003), pp. 154–159.

[Mon92] MONAGHAN J. J.: Smoothed particle hydrodynamics.
Annual review of Astronomy and Astrophysics 30(1992), 543–
574.

[Mon05] MONAGHAN J. J.: Smoothed particle hydrodynamics.
Reports on Progress in Physics 68(2005), 1703–1759.

[MSKG05] MÜLLER M., SOLENTHALER B., KEISER R.,
GROSSM.: Particle-based �uid-�uid interaction. InEurograph-
ics symposium on Computer animation(New York, NY, USA,
2005), SCA '05, ACM, pp. 237–244.

[OKK10] ORTHMANN J., KELLER M., KOLB A.: Topology-
caching for dynamic particle volume raycasting. InVMV (2010),
Eurographics Association, pp. 147–154.

[PH10] PELFREY B., HOUSE D.: Adaptive neighbor pairing for
smoothed particle hydrodynamics. InProc. Int. Conf. Advances
in Visual Computing (ISVC) - Part II(2010), pp. 192–201.

[SAC� 99] STORA D., AGLIATI P.-O., CANI M.-P., NEYRET F.,
GASCUEL J.-D.: Animating lava �ows. InGraphics Interface
(June 1999), pp. 203–210.

[SB12] SCHECHTER H., BRIDSON R.: Ghost sph for animat-
ing water.ACM Transactions on Graphics (Proceedings of SIG-
GRAPH 2012) 31, 4 (2012).

[SG11] SOLENTHALER B., GROSSM.: Two-scale particle simu-
lations.ACM Trans. on Graphics (Proc. SIGGRAPH) 30(2011),
81:1–81:8.

[She68] SHEPARD D.: A two-dimensional interpolation function
for irregularly-spaced data. InProceedings of the 1968 23rd ACM
national conference(1968), ACM, pp. 517–524.

[SP08] SOLENTHALER B., PAJAROLA R.: Density contrast sph
interfaces. InProceedings of the 2008 ACM SIGGRAPH/Euro-
graphics Symposium on Computer Animation(2008), Eurograph-
ics Association, pp. 211–218.

[SP09] SOLENTHALER B., PAJAROLA R.: Predictive-corrective
incompressible SPH.ACM Trans. Graph. 28(2009), 40:1–40:6.

[SZP07] SOLENTHALER B., ZHANG Y., PAJAROLA R.: Ef�cient
re�nement of dynamic point data. InSPBG(2007), pp. 65–72.

[ZSP08] ZHANG Y., SOLENTHALER B., PAJAROLA R.: Adap-
tive sampling and rendering of �uids on the GPU. InProceedings
Symposium on Point-Based Graphics(2008), pp. 137–146.

c 2012 The Author(s)
c 2012 The Eurographics Association and Blackwell PublishingLtd.


