Real-Time Volume Graphics

Lokovic and Veach

Krüger and Westermann

REAL-TIME VOLUME GRAPHICS
Markus Hadwiger
VRVis Research Center, Vienna

Eurographics 2006
Volumes in Games (1)

- Volumetric effects
- Participating media
- Semitransparent and flexible objects
- Distance volumes for displacement mapping
- ...

NVIDIA SDK Dobashi et al. Christof Rezk-Salama
Volumes in Games (2)

- Simulation grids (smoke, fire, ...); level sets
- Pre-computed radiance transfer for volumes
- Irradiance volumes? usually not volume rendering

Wei et al.
Fedkiw et al.
Procedural Volume Modeling

- Constructive volume modeling & animation
- Build volume from basic blocks
- Ken Perlin, David Ebert, Jim Blinn, …

Perlin

Schipok et al.

Kniss et al.
Volume Rendering and Game Engines

Integration issues
- Opaque scene geometry and volumes
- Semitransparent scene geometry and volumes
- Viewpoint inside the volume (e.g., fog, clouds)

- Integration with lighting
- Integration with shadows

Crysis / Crytek
No “Stand-Alone” Volume Rendering

- Integration with scene geometry
 - Correct visibility (volumes are semitransparent!)
 - Handle “room-filling” volumes
- Handle multiple volumes
- Integration with occlusion culling
- Integration with scene lighting
- Integration with HDR
Special Effects with Billboards (1)

- Billboards “cache” expensive effects
- Problem: clipping of billboards against geometry

Harris et al.
Potential solutions

- Take special care of billboard placement (e.g., cloud rendering of Mark Harris)

- Fade out billboard according to z-distance to geometry (used, e.g., in Crysis/Crytek)

- Use full volume rendering (still expensive, but improving rapidly)
Ingredients

- Slicing
- Ray-casting
- Local and global illumination
- Pre-integration
- Volume modeling and animation
- Performance optimizations
Integration with Scene Geometry

- Opaque scene geometry
- Semitransparent scene geometry
- Viewpoint inside the volume
- Visibility ordering for multiple volumes
- Occlusion culling
Shadows from Detailed Geometry

- Alpha coverage results in “semi-transparent” pixels
- Percentage of light that is occluded
Deep Shadow Maps (1)

- Unify shadows from geometry and volumes

Lokovic and Veach
Deep Shadow Maps (2)

- Geometry and volumes combine easily

Lokovic and Veach
Opaque Scene Geometry (1)

- Rasterize scene geometry into depth buffer
- Volume ray-caster stops rays at these depths
- Ray-cast on top of geometry or blend afterward
Opaque Scene Geometry (2)

- Back-project scene depth into volume space [0,1]
- Use these volume space coordinates to stop rays
- Works for arbitrarily complicated scenes
opaque scene geometry (3)

```c
float4 main(float2 window_position : TEXCOORD0,
            uniform sampler2D depth_texture,
            uniform float4x4 ModelViewProjInverse) : COLOR
{
    // compute the homogeneous view-space position
    // window_position is in [0,1]^2 and depth in [0,1]
    float4 hviewpos;
    hviewpos.xy = window_position;
    hviewpos.z = tex2D(depth_texture, window_position);
    hviewpos.w = 1.0;
    // we need this to be in [-1,1]^3 clip space
    hviewpos = hviewpos * 2.0 - 1.0;

    // back-project to homogeneous volume space
    float4 hvolpos = mul(ModelViewProjInverse, hviewpos);

    // return normalized volume-space position
    return (hvolpos / hvolpos.w);
}
```
Transparent Scene Geometry

- Render in depth layers (depth peeling)
- Ray-cast for each layer and handle layer as "opaque"
- Very rasterization-intensive
- Only real time for small number of layers
Viewpoint Inside the Volume

- Two main possibilities
 - Cap with geometry (clip near plane against frustum)
 - Render near plane and use stencil/depth buffer
Integration with Scene Lighting...

...and shadowing

- Lighting
 - Dynamic direct lighting
 - Pre-computed lighting?

- Shadowing
 - Shadow maps
 - Shadow volumes... not really
Shadow Casters and Receivers

- Geometry onto geometry
- Geometry onto volume
- Volume onto geometry
- Volume onto volume
- Shadows within volume

Lokovic and Veach
Integration with Shadow Volumes

- Stencil-based shadow volumes care only for one scene depth per pixel
- Soft shadow approaches depend even more on rasterization

- So: integration extremely hard

Assarsson and Akenine-Möller, Siggraph 2003
Integration with Shadow Maps

- Any depth can be tested for “in shadow or not”
- Shadows onto volumes very similar to geometry (volume is shadow receiver)

- Check each sample point inside the volume against shadow map
GPU Deep Shadow Maps (1)

- Presented at Graphics Hardware yesterday
• Visibility (opacity) function
• Node := (opacity, depth) pair
Visibility (opacity) nodes are stored in 3D texture

\[f(x) = y_i + \frac{x - x_i}{x_{i+1} - x_i} (y_{i+1} - y_i) \]
Simple Volumetric Effects (1)

- Pre-Integration + noising
 - animation:
 - change weighting through texture coords.
 - => distortion of dependent lookup

- color cycling with transfer functions
 - => outwards movement
Simple Volumetric Effects (2)

Radial distance volume + Perlin noise + Perlin noise

RGB texture
Simple Volumetric Effects (3)

- Pre-Integration + noising
- dot-product weighting
Simple Volumetric Effects (3)

- Pre-Integration + noising
- dot-product weighting

\[(1,0,0) = R \]
Simple Volumetric Effects (3)

- Pre-Integration + noising
- dot-product weighting

\[(\alpha, \beta, \gamma) = S_0\]
\[(\alpha, \beta, \gamma) = S_1\]
Simple Volumetric Effects (3)

- Pre-Integration + noising
- dot-product weighting
Volumetric Effects Simulation

- Procedural effects animation
- Particle systems (not really volumes)
- Incompressible Navier Stokes
- Lattice Boltzmann models (LBMs)
- Reaction diffusion

(Pre-computed CFD solutions)

Wei et al.
Cloud Dynamics (1)

[Harris et al., GH 2003]
Cloud Dynamics (2)

[Harris et al., GH 2003]
Volumetric Game Effects Framework

- [Krüger and Westermann, EG 2005]
- Simulate effect on 2D grid
- Turn into 3D volume on-the-fly during rendering
Extrusion from 2D Simulation

- Simulate on 2D grid
- Sample rotated version directly during ray-casting
- Simple texture coordinate computations

Krüger and Westermann

REAL-TIME VOLUME GRAPHICS
Markus Hadwiger
VRVis Research Center, Vienna

Eurographics 2006
Flow Simulation (1)

- Solve incompressible Navier Stokes
- Use GPU matrix / linear systems solver

Krüger and Westermann
Flow Simulation (2)

- Matrices: sets of vectors; vectors stored in textures
- Linear algebra via texture multiplication/addition

Krüger and Westermann, Siggraph 2003
Velocity Field Generation

Pressure templates

Krüger and Westermann
Pressure Templates

Krüger and Westermann
Integrate Other Approaches

- Particle systems for very complicated structures
- Simulation computed on vertex buffer

Krüger and Westermann

REAL-TIME VOLUME GRAPHICS
Markus Hadwiger
VRVis Research Center, Vienna

Eurographics 2006