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Abstract

In many systems hierarchical data structures are
used to accelerate the access to spatial data, whereas
other applications use a hierarchical volumetric data
structure to implicitly represent 3D objects.

We introduceDynamic Volume Trees (DVT), i.e. an
adaptive hierarchical volume data structure which
can be modified in real-time. The online capabil-
ity is achieved by realizing both the hierarchical
data structure and the manipulation of the struc-
ture solely on theGraphics Processing Unit (GPU).
Even though we focus on the representation of
highly-detailed volumetric scenes which may be
gathered by sensors, e.g. in the fields of robotics
and remote sensing applications, DVTs may eas-
ily be used to reference different data such as ob-
ject references. The data is organized in a hierar-
chical kd-tree-like structure which provides a com-
pact storage of multi-resolution volumes with no re-
dundant memory consumption. Boolean operations
are supported, i.e. sub-volumes can be efficiently
merged (set union) and removed (set subtraction)
with nearly arbitrary resolution. Additionally, a
tree optimization is realized in order to improve
the performance online. Furthermore, we present
two approaches to render the data structure. The
power and robustness of DVTs are demonstrated by
a multi-resolution volume drawing example.

1 Introduction

The use of fast and dynamic data structures is es-
sential in many fields of computer graphics. Al-
gorithms in areas such as ray tracing, collision
detection, and volume data processing, for exam-
ple, require exhaustive memory and computational
resources. Thus, this kind of applications orga-
nize their data mainly in hierarchical structures for
fast and efficient traversals, e.g. for data sam-
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Figure 1: Interactive Dynamic Volume Tree (DVT)
containing a multi-resolution drawing entirely man-
aged on the GPU. 1(a) illustrates the tree’s high res-
olution. The objects are drawn interactively in real-
time in solid mode (data structure:2.5M nodes,25
fps with primitives-rendering approach). 1(b) re-
sults from boolean operationsmergeandsubtract.
The torus in 1(c) is rendered with the ray casting ap-
proach. Its colors are coded with the gradient values
(512x512,10 fps).

pling and manipulation. The development of par-
allel algorithms becomes increasingly interesting
since the trend in todays computing hardware is to-
wards multi-core systems which achieve an enor-
mous speed-up in computation time. This makes
the Graphics Processing Unit (GPU)with its high
computational power of parallelism interesting for
handling dynamic data structures. If hierarchy con-
struction methods are parallel, they are scalable on
future streaming architectures.

While previous data structures like kd-trees were
build by the CPU and finally transferred to the GPU
memory for traversal and sampling tasks [6], to-
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day’s techniques generate even complex data hier-
archies directly on the GPU [31]. Thus, a rela-
tively expensive latency for copying data structures
is avoided. The topic of GPU-updated sparse and
adaptive structures is an area of focus for active re-
search such as ray-tracing [23] and collision detec-
tion [7] as well as for representing static objects [3].

In this paper we introduceDynamic Volume Trees
(DVT), a hierarchical data structure in connection
with online processing capabilities including the
following contributions:

• The main element of DVT is a kd-tree-like
hierarchical volume tree which is completely
built and managed by the GPU.

• DVT supports GPU-updated operations, i.e.
merging and subtraction of sub-volumes with
(nearly) arbitrary resolution and at interactive
frame-rates.

• Interactive compactification is performed di-
rectly on the GPU.

• Regarding the representation of dynamic ob-
jects, two rendering approaches are proposed
for visualizing DVTs, one is based on a
geometry-shader and a “per primitive render-
ing” for each voxel, whereas the second ap-
proach implements a ray casting algorithm.

The development of DVTs aims at the generation of
volume models from real sensor data in robotics and
remote sensing applications which are still topic of
our current research. Therefore, the power and ro-
bustness of the data structure is demonstrated by a
multi-resolution volume drawing example. It sup-
ports simple CSG operations as well as the vox-
elization of polygon models which are transferred
into 3D volumes and then merged into the tree
structure within a few milliseconds.

This paper is structured as follows: We start with an
overview of the previous work in Sec. 2, followed
by a conceptual overview over DVTs (Sec. 3). A
detailed description of the DVT-implementation is
presented in Sec. 4. Then, in Sec. 5, we present
the volume drawing application and the evaluation
of the data structure. Finally, Sec. 6 concludes this
paper and comments on future work.

2 Background

Data structures such as kd-trees, grids, or bounding
volume hierarchies are especially required in areas
of high performance algorithms but the relative ef-
fectiveness of these structures varies tremendously
depending on the application. It is a general prob-
lem how to build or update these data structures and
it has been extensively discussed in the field of ray
tracing, but it is also applicable to other areas such
as collision detection [13, 16] and sorting [14].

Any approaches in the context of dynamic data
structures can be classified into three categories.
The first category is characterized by reconstruct-
ing the entire data structure whenever the scene has
changed. Shevtsov et al. [27] rebuild a kd-tree from
scratch in every frame, for example. Thus, knowl-
edge of the animation path or other constraints is
not required. The primary disadvantage of this ap-
proach is that it can be expensive to completely re-
build the data structures especially for large scenes
and sophisticated structures.

Secondly, if the majority of the scene remains static,
a significant coherence exists among subsequent
frames. A complete reconstruction of the data
structure is substituted just by updating the parts
which have changed. Incremental updates have
been proposed forBounding Volume Hierarchies
(BVHs) [16], for instance. The major drawback of
this approach is that its feasibility significantly de-
pends on the kind of changes which are present in
the scene, thus the structure tends to degrade after
several updates, especially if the structures’ overall
topology is not updated.

Finally, the last category contains approaches which
are applicable for scenes consisting of a large set of
(rather) static objects. The idea is to pre-compute
an acceleration structure for the static parts and to
separate it from the dynamic geometry. An ad-
ditional top-level acceleration structure might be
necessary which includes coordinate-system trans-
formation nodes in order to recompose the entire
scene [20, 28].

One of the first approaches proposing a dynamic
data structure for ray tracing applications has been
presented by Reinhard et al. [25], which allowed
the insertion and the deletion of objects in con-
stant time. The structure is based on hierarchi-



cal grids which entirely ran on the CPU. While
some methods were examined in order to avoid the
performance limiting reconstruction of such struc-
tures [20], the first approaches started to use the
GPU for graphics hardware accelerated data struc-
tures [1] but were still limited due to architectural
constraints. Modern approaches run hierarchical
acceleration structures such as kd-trees [6, 11, 12]
and BVHs [8]. However, these approaches es-
sentially built their structures on the CPU, and do
not support any GPU-based updates. The efficient
GPU-based data structures proposed by [2] and [19]
still use the CPU as a memory manager instance.

In fact, Purcell et al. [24] were the first to de-
scribe an entirely GPU-updated, dynamic sparse
data structure. Lefohn proposedGlift - a pow-
erful library which offers generic data structures
for GPUs [18]. Its dynamic and adaptive struc-
tures use the CPU only to generate GPU itera-
tors. Dyken et al. [4] buildhistogram pyramids
on the GPU and perform a marching cubes al-
gorithm on top of it. Whereas some approaches
started to use hierarchical and dynamic data struc-
tures on multi-core CPUs [22, 27, 15]. Very re-
cently, first approaches of manipulating hierarchical
structures online on the GPU have been presented.
[30] build an octree structure to handle point clouds.
Zhou et al. [31] construct a new kd-tree for ray trac-
ing per frame, Lauterbach et al. [17] use a BVH for
a similar task.

In contrast to this, our approach is able to represent
and manage complete hierarchical volumes on the
GPU and introduces further processing capacities,
e.g. merging and subtraction.

3 Overview of Concept

Our Dynamic Volume Tree (DVT)structure is sit-
uated completely on the GPU and it is only up-
dated in those regions where changes have been
made. The concept of DVTs involves a represen-
tation suited for the GPU and a set of operations
which allow to modify the structure in an efficient
way. In the following, the DVT is introduced by
providing a conceptual overview of the method.
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Figure 2: An example (in 2D) consisting of a spe-
cific tree and its corresponding spatial representa-
tion. The node stream results from a pre-order tree-
traversal.

3.1 Tree Topology

The DVT subdivides space similar to a kd-tree.
However, the splitting scheme is uniform and axis-
aligned: each splitting plane halves the previous
block into a pair of two equal-sized sub-blocks.
Subdivision is repeatedly performed along thex, y

andz-axis, where the depth level of the tree may
vary locally. By using a constant bounding box this
spatial devision scheme assigns a fixed subspace
(voxel) to each node in the binary tree. In princi-
ple, this rule can be applied to a spatial subdivision
in arbitrary dimensions (see Fig. 2).

As mentioned before, we focus on the representa-
tion of geometry. Thus, only the leafs of the tree,
which are defined as voxels, contain spatial infor-
mation and we store values to mark the object’s in-
terior (0) and exterior (1) as leaf attributes. To im-
prove the accuracy we can store float values within
the range of[0, 1] specifying the distance of the
voxel to the respective surface of the object (see
Sec. 5.1 for rendering aspects). For simplification
reasons, in the following we assume simple binary
values to be stored in the leafs.

3.2 Tree Manipulation

The modification of the DVT can be seen as an op-
eration changing the structure and the values in the
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Figure 3: An example showing the result after a
merge or subtract operation. The yellow-marked
nodes form the input.

tree. Assuming that we have a current tree and an
input tree, which may specify an implicit geome-
try, e.g. a sphere, or a polygonal mesh (see Sec. 4.4
for details on hierarchical geometry rasterization).
Now the task is to “insert” the new tree into the cur-
rent one. We support two boolean operations, i.e.

Merge: The input geometry is merged with the ge-
ometry represented in the current tree.

Subtract: The input geometry is subtracted from
the geometry represented in the current tree.

Note that processing leafs is sufficient, i.e. both op-
erations can be realized by writing new leafs into
the current DVT-structure. Merging and subtract-
ing are realized by reading1s from the input stream
and writing them to the current DVT as1s and0s
respectively (see Fig. 3.) Furthermore note that the
resulting DVT has the same topological structure in
both cases, but it may contain redundancies. Then,
an optimization pass has been designed which re-
moves redundant subtrees (Sec. 4.3). We do not
want to put any restriction on the voxels of the input
tree with regard to their locations within the hierar-
chy which results in different sizes of voxels. This
means that the locations in the tree which may be
affected by a modification process are scattered ar-
bitrarily. Thus, we face the challenge that, depend-
ing on the topology of the current tree, it may be
necessary to expand or reduce complete subtrees in
order to write the respective input voxels into the
tree (see Fig. 3). This is achieved by performing
the tree modifications iteratively, namely by adding
and removing node levels locally. The iteration ter-

minates, if no modifications are pending and when
the node stream of the current DVT is not changing
any more. The iteration is split up in three data-
parallel passes, themark, the restructureand the
remappass (see Alg. 3.1). The mark pass selects
those nodes within the current DVT which need to
be expanded or reduced (see Sec. 4.2.1). The depth
of these marked nodes corresponds to the resolu-
tion of the respective input voxel. This information
needs to be stored together with the input voxels and
will later be referred to as thetarget depth. The re-
structure pass interprets the marked nodes and adds
or removes them (see Sec. 4.2.2). Note that both
operations handle subtrees despite the fact that one
single level is added/removed per iteration. Adding
subtrees is realized by marking newly added nodes
in the next mark pass; removing subtrees is realized
by removing subsequent children during the next
restructure pass. Finally, the remap pass ensures
a correctly pointered tree structure by resetting all
pointers. This involves a two-pass routine using a
temporary look-up table (see Sec. 4.2.3). The over-
all modification process is described in the algorith-
mic overview given in Alg. 3.1. A more detailed
and implementation-driven explanation of the sin-
gle passes involved in the algorithm, including tech-
nical aspects, is given in Sec. 4.

Algorithm 3.1 (algorithm overview)

1 do
2 // pass 1 (mark):
3 for each input voxel
4 if appropriate node existent in tree:
5 update value
6 else if subtree needs to be expanded/reduced:
7 mark nodefor pass 2
8
9 // pass 2 (restructure):

10 for each marked noden
11 if n is markedfor expansion
12 add children
13 if (n markedfor reduction)
14 or (n has invalid parent)
15 setn’s childrens’ parent ptrs. invalid
16 removen
17
18 // pass 3 (remap):
19 for each noden:
20 add node to look−up table
21 for each noden:
22 read pointers from look−up table
23
24 while (∃ marked nodes)
25 or (stream has been altered)



4 Implementation

From now on, a GPU specific view of the strat-
egy presented in Sec. 3 is provided, i.e. Alg. 3.1
is explained in detail including all technical aspects
which are necessary to realize this idea on the GPU.
We have chosen to use a shader API-oriented termi-
nology as our approach fits perfectly to the use of
geometry shaders.

4.1 DVT Storage

The tree is stored in three vertex streams in graphics
memory. These streams can be propagated through
the graphics pipeline in a single render pass. The
arrangement of the node information is shown in
Fig. 4.
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Figure 4: Representation of the tree structure in
streams. The cells belonging to one node are
marked yellow.

Pointer Stream
This stream contains the pointer structure, i.e. the
node’s parent and children as node IDs, and the
node’s value. A pointer can be set to−1, mean-
ing that it is non-existent, e.g. the parent in the case
of the root or the children in the case of leaf nodes.

Node Stream
This stream provides a node’s spatial position and
a depth value implying its level in the hierarchy.
This stream information can be used for an efficient
rendering without always being forced to determine
each node’s position.

Remap Stream
The third stream is used as a temporary container
used for coding the look-up table necessary when
remapping pointers (Sec. 4.2.3).

These streams are stored ingl_Position,
gl_TexCord[0] andgl_TexCord[1] respec-
tively. During processing, stream information can
be transferred to a texture object and back by us-
ing the pixel buffer extension. This allows the algo-
rithm to use stream processing (e.g. with the geom-
etry shader) and rendering for scattering operations.
This strategy is used to read the pointer stream
through texture-fetching. To achieve a fragment-
based process, the texture object is double-buffered,
thus being accessible for writing operations. From
now on we will assume that all streams can be read
and written as streamsor textures, assuming that the
data has been transferred appropriately before pro-
cessing. The nodes of the binary tree are stored in
pre-order. This ensures that the root node is located
at the beginning of the stream and does not change
its location when modifying the tree.

4.2 DVT Modification

The write operation is the core of the DVT ap-
proach. It solves the problem of adding and remov-
ing nodes when merging a new input volume to the
tree. As mentioned in Sec. 3, depending on the loca-
tion of input voxels (e.g. leaf of the input DVT) the
tree structure must be expanded in regions where
the depth is insufficient, whereas it must be reduced
at oversampled regions in order to eliminate super-
fluous nodes. Alg. 3.1 contains the steps necessary
to realize modifications in parallel. We now refor-
mulate the approach to the specifics of the GPU, in-
cluding a workflow which can be realized by using
stages of the graphics pipeline.

The workflow consists of a loop in which three
passes are used:mark, restructureandremap. Re-
member that the input consists of a stream of input
voxels together with their target depths. Themark
pass selects a set of tree nodes which are affected
by the input by writing special marker values into
the pointer stream. The marked stream is then pro-
cessed in a geometry shader pass: the restructure
pass. Finally, theremappass takes care of correct
pointers. The three passes are repeated until noth-
ing has to be changed any longer, i.e. if no node is
marked and no node is added or removed.



4.2.1 Mark Pass

The idea of themark pass is to select tree nodes
which are affected by a write operation. This se-
lection is realized by a scattering approach which is
implemented in a vertex shader. In order to simul-
taneously read from and write to the pointer stream,
a double-buffered access is necessary. As only a
subset of the stream nodes is changed, the output
as well as the input must be initialized to the cur-
rent state of the pointer stream. The actual marking
is done using a scattering approach implemented in
a vertex shader: The tree is traversed for each input
voxel until the target depth or a leaf node is reached.
The traversal follows a path defined by the voxel’s
spatial location and node locations. There are three
cases where nodes are marked when a voxel, i.e.
leaf node of the input stream at a given level (“tar-
get level”), is processed:

1. If in the current DVT a leaf node at target
depth is reached and the value of this leaf node
is different from the value of the voxel, then
the voxel’s value is written into the leaf node
of the current DVT.

2. If in the current DVT a leaf node is reached at
an insufficient depth, i.e. the DVT needs to be
expanded, then the node is marked.

3. If an intermediate node is reached in the cur-
rent DVT at the target depth, i.e. the tree needs
to be reduced, then the node is marked.

In all other cases the current vertex is clipped by
moving it out of the output stream and no value is
written. Nodes are marked by subtracting a high
number from the node’s value. Such nodes are later
unmarked by adding the same high number to the
value.

4.2.2 The Restructure Pass

The restructurepass processes the node stream in
a geometry shader. Nodes are added and removed
where it is necessary. Fig. 5 shows how the remov-
ing and adding of nodes works by means of two
classic examples. Both operations use a two-pass
strategy: turn pointers to−2 and update them in a
subsequent pass.

The root of subtrees which have to be removed in
the current DVT is indicated by marked intermedi-
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Figure 5: Reduction and expansion of DVT.

ate nodes. Remember that the reduction needs to
be performed iteratively, starting from the marked
node. Since this node remains in the tree as leaf, its
children are made invalid, which is indicated by set-
ting their parent pointers to−2. Invalid nodes can
be removed safely in the next restructure pass. By
removing these nodes in the next pass, their chil-
dren are transformed into invalid nodes again. Es-
sentially, this realizes the iteration. In the example
given on the left hand side of Fig. 5, left, two levels
of nodes need to be removed underneath the marked
intermediate node. The iteration stops when no
change occurs anymore (after step 1d). Nodes are
added at marked leaf nodes which imply insufficient
depth. To add the children for this node, the geom-
etry program emits two new vertices which, due to
the pre-order sequence, are located directly after the
current node. The parent-pointers of the two chil-
dren nodes can be set directly as the parent is ex-
actly the node processed currently in the shader. On
the other hand, the newly added nodes do not pos-
sess a valid ID yet since the parallel stream process-
ing does not allow to create a globally unique ID se-
quence. Thus, the parent pointers of the new nodes
are temporarily set to−2. The nextremap takes
care of remapping the pointers and updating those
pointers set to−2. This is an easy task because the
children are located next to the parent node in the
stream (at offsets+1 and+2).
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4.2.3 The Remap Pass

Each time the size of the node stream is altered, the
pointer structure needs to be updated accordingly.
The problem is that moving nodes to other stream
locations implies that all pointers to these nodes
must be redirected (see Fig. 6) which can be done
in parallel using the following scattering-approach.
Assume that each node possesses an ID correspond-
ing to its location in the stream. One node moves
from an old ID to a new ID when the stream is mod-
ified:

1. Render new node IDs as vertices into the
remap stream. The output location of each ver-
tex is determined by the old ID.

2. Process the new stream and perform the fol-
lowing operation: update the pointers (parent,
left, right) for each node by reading the remap
stream.

4.3 Redundancy Optimization

After a write operation on the tree there are cases
which can occur where two children or even a whole
subtree hold the same value (compare with Fig. 3).
These cases can be collapsed without changing the
represented volume. Accordingly, thecollapseop-
eration solves the problem of joining two leaves (at
same depth) with equal value. The operator is im-
plemented in a geometry pass which detects super-
fluous successors. The parent node is set to the
value of the successors and the successors them-
selves are removed. In order to speed-up the shader,
a window of four adjacent nodes is processed by us-
ing the adjacency capability of OpenGL in connec-
tion with line strips. This avoids texture fetch and
ensures best caching behaviour.

After collapse, a pointer remap is performed ac-
cording to Sec. 4.2.3.

4.4 DVT generation

In Sec. 3 we assumed that our input geometry is
already given as DVT. Even though the rasterization
of 3D objects is a research field by its own, we make
some remarks on how to generate DVTs for objects.

Voxelization of Polygon Meshes
A simple, yet potentially exhaustive technique is to
rasterize an object on a a certain tree level and apply
the optimization technique from Sec. 4.3 (see also
[5]). Potentially, this requires a huge amount of data
and time since the DVT has to be fully instantiated
at the predefined level. We use an algorithm sim-
ilar to [29] which uses clipping planes and front-
and back-face rendering to generate slices which are
rendered to a 3D texture. The result is a binary solid
voxel model, the quality of which is depending on
the volume resolution of the 3D texture.

Hierarchical Rasterization
A more effective approach directly works in a hier-
archical manner. The hierarchical rasterization pro-
vided in Alg. 4.1 creates a temporary node stream
containing a hierarchical description of the object
to be written into the global structure. The stream
is constructed in a loop where each iteration adds
one depth level. Thus, the strategy can be seen
as a refinement of the hierarchy from coarse (only
the root node) to a specific target depth which is
given as input parameter. A special marker is used
to identify nodes which do not need to be refined
again, so-calledfinishednodes. It has to be noted
that this algorithm heavily depends on the insid-
e/outside/boundary detection for a given geometry
in order to be rasterized hierarchically. For im-
plicit geometries, this functionality can easily be re-
alized using the inherent distance measure, whereas
polygonal meshes require more sophisticated tech-
niques.

Algorithm 4.1 (hierarchical rasterization)

1 initialize a stream with root node of value 1
2 for each depthd ∈ {0, . . . , dtarget}
3 for each non-finishedstream noden
4 if n is outside the object:
5 discardn
6 else if n is inside the object, ord = dtarget:
7 markn asfinished



8 else if n crosses the object’s surface
9 subdividen by adding 2 children to stream

10 process the new stream according to Sec. 3.2

Sub-Voxel Accuracy
As mentioned in Sec. 3.1, we may also store float
values which specify the distance of the voxel cen-
ter to the exact object’s surface. Computing this
distance depends on the type of geometry, e.g. for
implicit geometries it is rather straight forward. To
keep the memory consumption low, this is applied
only to voxels close to the surface, i.e. within a
narrow band. This leads to a representation of the
object as a signed distance field and allows render-
ing of the surface at sub-voxel accuracy as shown in
Sec. 5.1.

5 Results and Analysis

In this section we demonstrate the application of
the DVT by presenting a multi-resolution volume
drawing example and a performance analysis. For
visualization purpose we propose two rendering ap-
proaches.

5.1 Rendering

The following visualization approaches are exam-
ples of how DVTs can be traversed in order to ren-
der the information of the leaf nodes at interactive
frame-rates. Due to the hierarchical structure, both
approaches implicitly implement an empty-space
skipping similar to [26].

Primitive Rendering
This rendering approach uses the graphics hard-
ware’s geometry shader. The node stream is pro-
cessed by a geometry program which renders a ge-
ometric primitive, e.g. a cube, for each voxel which
is marked as the object’s interior (see Fig. 1(a) and
1(b)). The voxel’s spatial representation can easily
be calculated by identifying its position in the DVT,
i.e. by taking the depth value of the node stream
into account. The geometry shader’s processing
speed is affected by the increasing number of nodes
which can be reduced by the redundancy optimiza-
tion. The approach skips the empty space as the
geometric primitives adapt exactly their spatial re-
gions corresponding to the voxel size. Its complex-

ity scales with the number of nodesn which are to
process withO(n) rather than with the number of
pixels of the output image.

Ray Casting
This approach implements a ray casting algorithm
similar to [9] as a fragment program. The DVT is
traversed for each pixel of the target image. All
the voxels along a viewing ray are traced for fur-
ther evaluation. If a voxel does not fit the criterion
for the object’s interior, it is skipped and the next
voxel along the ray is processed. The first hit of a
voxel of the object’s interior represents its surface.
Its complexity withO(p) depends on the number
of pixelsp of the resulting image which initiate the
DVT-traversals along the viewing rays.

In Sec. 4.4 we refer to the storage of float values.
This feature can be utilized in order to improve the
visual appearance of the tree’s rendering. The in-
formation can be applied to the calculation of shad-
ing algorithms, e.g. the computation of gradients at
sub-voxel level visibly improves the phong shading
(see Fig. 1(c)).

5.2 Volume Drawing

We demonstrate an interactive volume drawing ap-
plication that stores the drawing in a DVT which is
entirely maintained and updated on the GPU (see
Fig. 1(a)). The application is well suited to show
the performance of the hierarchical data structure.
The data can bedrawn into the DVT with a nearly
arbitrary effective draw-resolution that is only con-
strained by the hardware’s floating point precision.
Its size is bounded by the GPU memory. The brush
modebmode ∈ {surface, solid}, the brush sizebsize

as well as the brush’s current voxel sizevsize are ad-
justable by the user.vsize defines the target depth
of the tree where the current drawing is written to.
The application catches drawing events at60fps and
processes the data immediately. Thus, the applica-
tion provides an interactive feedback while draw-
ing in 3D space. Additionally, the application pro-
vides an interface for the voxelization of polygonal
meshes which can be processed by the DVT.

We maintain highly interactive rates during the
drawing process. In particular, the frame rates de-
pend on the number of nodes which are currently to
be processed as well as the fill-level of the DVT.
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Figure 7: Performace-comparison of different
strategies using the write and collapse operations
(see Sec. 5.3 for legend’s abbreviations). A torus
is drawn in120 steps (x-axis). In 7(a) the time for
writing the new data into the DVT is measured in
milliseconds (y-axis). 7(b) displays the total num-
ber of nodes (fill-level) during the drawing.

With regard to the boolean operationsmergeand
subtract, DVTs can not only add new data to the
structure but provide a feature to carve data out.
Please see the accompanying video for live demos.

5.3 Performance Analysis

The volume drawing application presented in the
previous section has been used to analyze the per-
formance of DVTs. The application is tested on
an Intel Dual Core2.67GHz CPU with a NVIDIA
GeForce GTX 280 (1024MB) graphics card. The
upper bound for the number of nodes is set to
nmax = 221. The test set-up automatically draws
a torus withbsize = 0.04, vsize = 1

512
andbmode =

solid in four different ways:

1. Drawing with no redundancy optimization and
no hierarchical rasterization (NO),

2. drawing with redundancy optimization en-
abled and no hierarchical rasterization (RO),

3. drawing with hierarchical rasterization en-
abled (HR),

4. and drawing with both redundancy optimiza-
tion and hierarchical rasterization enabled
(ROHR).

The construction of the torus is done by moving
the brush120 steps in a circular shape with a step-
width of 3 degrees (see Fig. 1(c)). The results
of the measurements of DVT modifications, i.e.
performing write and collapse operations, are dis-
played in Fig. 7(a) and 7(b). The best performance
is achieved by enabling the redundancy optimiza-
tion as well as the hierarchical rasterization which
performs the collapse operation every 10th step as
indicated by the respective peaks in the time mea-
surement (see RO and ROHR in Fig. 7(a)). The
effect of the redundancy optimization is also illus-
trated by the decreasing number of nodes after each
iteration (see RO and ROHR in Fig. 7(b)). The
continuous ups and downs of each plot in Fig. 7(a)
are explained easily: the tree does not need to be
expanded in certain regions during each write op-
eration as previous write operations may have ex-
panded the tree already at the specific target depth.
This results in a better performance and thus in a
better time measurement.

The scalability of our highly parallel DVT im-
plementation is examined by disabling processing
units of the graphics hardware. Similar to [31] we
use the NVStrap-driver in RivaTuner [21] in order
to reduce the number of processors of a Geforce
8800 GTX since the NVStrap can not be applied
to G90 chipsets of the latest NVIDIA GPUs. The
running time of the write operation is scalable to a
great extend. However, its scalability is sublinear
due to the constant overhead in API management
(see Table 1).

5.4 Discussion

Alternative Implementation Technique
Our current DVT-version is implemented using
Shader Model 4 (SM4)-capabilities of the graph-
ics hardware as described in the previous sections,



#procs 16 32 48 64 80 96 112 128 speed-up
171.751 nodes 474ms 254ms 185ms 149ms 131ms 120ms 113ms 107ms 4.43

1.232.589 nodes 4086ms 2100ms 1444ms 1120ms 938ms 816ms 773ms 669ms 6.11

Table 1: Scalability of the DVT’s write operation on a GeForce 8800 GTX graphics card. The last column
shows the speed-up of the use from 16 to 128 processors while insertinga certain number of nodes into the
DVT.

which are based on the execution of shader pro-
grams. We have chosen to take the shader-based
approach because its stream processing capabilities
(e.g. with the geometry shader) are extensively used
in our algorithms. In addition to this, we do not use
any shared memory functionality and thus we do
not require the latest graphics hardware.

We compared the stream processing capabilities
between SM4 and CUDA for performance rea-
sons. The stream expansion and compaction al-
gorithms [10] have been implemented for DVTs
and compared to the geometry program usage with
its transform feedback feature. In contrast to
Dyken et al. [4], who have noticed a slightly better
performance of their OpenGL implementation over
the CUDA approach, our results show no significant
difference.

Comparison
In contrast to former spatial data structures the DVT
focuses on a new multi-resolution spatial volume
representation. This difference makes it rather dif-
ficult to do a direct comparison with well known
acceleration structures mostly used in the area of
ray tracing without integrating these data structures
into the same application. However, Zhou et al. [31]
construct a kd-tree on graphics hardware for ray
tracing as well as photon mapping for dynamic
scenes. The kd-tree is build from scratch for every
frame, similar to Lauterbach et al. [17] who rebuild
their BVH for each frame. In spite of the similar-
ities of GPU managed spatial data structures, we
point out that our approach merges and subtracts
complete sub-volumes at interactive frame-rates.

Similar to our kd-tree-like structure, Zhou et al. [30]
build an octree-structure in real-time on the GPU
to handle point clouds. New points can be inserted
into the hierarchy and the respective object surface
is reconstructed. Basic boolean operations are also
supported by computing implicit functions for the
surface. However, the DVTs can handle data in a
nearly arbitrary resolution, i.e. target depth, and the

values of the data structure do not have to be sorted
before processing.

In general, a quantitative comparison of the data
structures is difficult due to the different fields of
applications.

6 Conclusion

With this paper we have presented a new adaptive
hierarchical volume data structure, namely theDy-
namic Volume Tree (DVT), which runs entirely on
the GPU and can be modified interactively. The kd-
tree-like hierarchical structure is completely built
and managed by the GPU and supports boolean
operations for the merging and subtraction of sub-
volumes with nearly arbitrary resolution at interac-
tive frame-rates. We have also presented two ren-
dering approaches. The tree is integrated into a vol-
ume drawing application for multi-resolution draw-
ing in real-time.

There are several directions for future investigation.
A sophisticated solution for an hierarchical raster-
ization of polygonal meshes is still pending as the
rasterization of an object on a predefined level of
detail requires a huge amount of data for the DVT’s
fully instantiation. We also intend to implement a
bricking support for a dynamic allocation and the
management of several DVTs in a single applica-
tion. Future potential is seen for the CUDA imple-
mentation of DVTs since the complexity of the pro-
gram structure decreases significantly. Upcoming
architectures such as Larrabee with its high number
of cores should exploit the tree’s parallel scalability
and may be worth investigating further. With regard
to applications, we are working on the use of DVTs
for the online generation of volume models from
real sensor data, e.g. in robotics and remote sensing
applications. The application of DVTs for real-time
GPU ray tracing could also be an interesting topic
for further investigation.
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